Skip to main content
Log in

Thermal conductivity of anisotropic spin-1/2 two leg ladder: Green’s function approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the thermal transport of a spin-1/2 two leg antiferromagnetic ladder in the direction of legs. The possible effect of spin-orbit coupling and crystalline electric field are investigated in terms of anisotropies in the Heisenberg interactions on both leg and rung couplings. The original spin ladder is mapped to a bosonic model via a bond-operator transformation, where an infinite hard-core repulsion is imposed to constrain one boson occupation per site. The Green’s function approach is applied to obtain the energy spectrum of quasi-particle excitations responsible for thermal transport. The thermal conductivity is found to be monotonically decreasing with temperature due to increased scattering among triplet excitations at higher temperatures. A tiny dependence of thermal transport on the anisotropy in the leg direction at low temperatures is observed in contrast to the strong one on the anisotropy along the rung direction, due to the direct effect of the triplet densities. Our results reach asymptotically the ballistic regime of the spin-1/2 Heisenberg chain and present a complement regime for the exact diagonalization data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Mater. Res. Bull. 8, 2 (1973)

    Article  Google Scholar 

  2. P.W. Anderson, Science 235, 1196 (1973)

    Article  ADS  Google Scholar 

  3. E. Dagotto, R. Riera, J.D.J. Scalapino, Phys. Rev. B 45, 5744 (1992)

    Article  ADS  Google Scholar 

  4. C. Hess, C. Baumann, U. Ammerahl, B. Buchner, F. Heidrich-Meissner, W. Brenig, A. Revcolevschi, Phys. Rev. B 64, 184305 (2001)

    Article  ADS  Google Scholar 

  5. A.V. Sologubenko, K. Gianno, H.R. Ott, U. Ammerahl, A. Revcolevschi, Phys. Rev. Lett. 84, 2714 (2000)

    Article  ADS  Google Scholar 

  6. C. Hess, Eur. Phys. J. Special Topics 151, 73 (2007)

    Article  ADS  Google Scholar 

  7. X. Zotos, F. Naef, P. Prelovsek, Phys. Rev. B 55, 11029 (1997)

    Article  ADS  Google Scholar 

  8. F. Heidrich-Meisner, A. Honecker, D.C. Cabra, W. Brenig, Phys. Rev. B 66, 140406(R) (2002)

    Article  ADS  Google Scholar 

  9. F. Heidrich-Meisner, A. Honecker, D.C. Cabra, W. Brenig, Phys. Rev. B 68, 134436 (2003)

    Article  ADS  Google Scholar 

  10. E. Orignac, R. Chitra, R. Citro, Phys. Rev. B 67, 134426 (2003)

    Article  ADS  Google Scholar 

  11. K. Saito, S. Miyashita, J. Phys. Soc. Jpn 71, 2485 (2002)

    Article  ADS  Google Scholar 

  12. N. Hlubek et al., J. Stat. Mech. 2012, P03006 (2012)

    Article  Google Scholar 

  13. K. Louis, P. Prelovsek, X. Zotos, Phys. Rev. B 74, 235118 (2006)

    Article  ADS  Google Scholar 

  14. E. Shimshoni, N. Andrei, A. Rosch, Phys. Rev. B 68, 104401 (2003)

    Article  ADS  Google Scholar 

  15. A.V. Rozhkov, A.L. Chernyshev, Phys. Rev. Lett. 94, 087201 (2005)

    Article  ADS  Google Scholar 

  16. P. Jung, R.W. Helmes, A. Rosch, Phys. Rev. Lett. 96 067202 (2006)

    Article  ADS  Google Scholar 

  17. M. Montagnese, M. Otter, X. Zotos, D.A. Fishman, N. Hlubek, O. Mityashkin, C. Hess, R. Saint-Martin, S. Singh, A. Revcolevschi, P.H.M. van Loosdrecht, Phys. Rev. Lett. 110, 147206 (2013)

    Article  ADS  Google Scholar 

  18. C. Hess, P. Riberio, B. Büchner, H. ElHaes, G. Roeth, U. Ammerahl, A. Revcolevschi, Phys. Rev. B 73, 104407 (2006)

    Article  ADS  Google Scholar 

  19. X. Zotos, Phys. Rev. Lett. 92, 067202 (2004)

    Article  ADS  Google Scholar 

  20. E. Boulat et al., Phys. Rev. B 76, 214411 (2007)

    Article  ADS  Google Scholar 

  21. M. Znidaric, Phys. Rev. Lett. 110, 070602 (2013)

    Article  ADS  Google Scholar 

  22. A.V. Chubukov, J. Exp. Theor. Phys. Lett. 49, 129 (1989)

    Google Scholar 

  23. S. Sachdev, R.N. Bhatt, Phys. Rev. B 41, 9332 (1990)

    ADS  Google Scholar 

  24. E. Čižmár, M. Ozerov, J. Wosnitza, B. Thielemann, K.W. Krämer, Ch. Rüegg, O. Piovesana, M. Klanjšek, M. Horvatić, C. Berthier, S.A. Zvyagin, Phys. Rev. B 82, 054431 (2010)

    Article  ADS  Google Scholar 

  25. V. Kiryukhin, Y.J. Kim, K.J. Thomas, F.C. Chou, R.W. Erwin, Q. Huang, M.A. Kastner, R.J. Birgeneau, Phys. Rev. B 63, 144418 (2001)

    Article  ADS  Google Scholar 

  26. B. Normand, Ch. Rüegg, Phys. Rev. B 83, 054415 (2011)

    Article  ADS  Google Scholar 

  27. A. Langari, P. Thalmeier, Phys. Rev. B 74, 024431 (2006)

    Article  ADS  Google Scholar 

  28. G.D. Mahan, Many-particle physics (Kluwer Academic/Plenum Publishers, 2000)

  29. A. Abrikosov, L. Gorkov, T. Dzyloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975)

  30. A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)

  31. H. Rezania, A. Langari, P. Thalmeier, Phys. Rev. B 77, 094438 (2008)

    Article  ADS  Google Scholar 

  32. F. Grosso, P. Parravincini, Solid state physics (Academic Press, 2000)

  33. I. Paul, G. Kotliar, Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  34. V.N. Kotov, O. Sushkov, Z. Weihong, J. Oitmaa, Phys. Rev. Lett. 80, 5790 (1998)

    Article  ADS  Google Scholar 

  35. O.P. Sushkov, V.N. Kotov, Phys. Rev. Lett. 81, 1941 (1998)

    Article  ADS  Google Scholar 

  36. V.N. Kotov, O.P. Sushkov, R. Eder, Phys. Rev. B 59, 6266 (1999)

    Article  ADS  Google Scholar 

  37. V.N. Kotov, J. Oitmaa, Z. Weihong, Phys. Rev. B 59, 11377 (1999)

    Article  ADS  Google Scholar 

  38. P.V. Shevchenko, V.N. Kotov, O.P. Sushkov, Phys. Rev. B 60, 3305 (1999)

    Article  ADS  Google Scholar 

  39. V.N. Kotov, J. Oitmaa, O.P. Sushkov, Z. Weihong, Phys. Rev. B 60, 14613 (1999)

    Article  ADS  Google Scholar 

  40. H. Rezania, A. Langari, P. Thalmeier, Phys.Rev. B 79, 094401 (2009)

    Article  ADS  Google Scholar 

  41. H. Rezania, A. Langari, Phys. Rev. B 82, 174407 (2010)

    Article  ADS  Google Scholar 

  42. H. Rezania, A. Langari, Eur. Phys. J. B 84, 37 (2011)

    Article  ADS  Google Scholar 

  43. S. Langer, R. Darradi, F. Heidrich-Meisner, W. Brenig, Phys. Rev. B 82, 104424 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Langari, A., van Loosdrecht, P.H.M. et al. Thermal conductivity of anisotropic spin-1/2 two leg ladder: Green’s function approach. Eur. Phys. J. B 87, 173 (2014). https://doi.org/10.1140/epjb/e2014-50018-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50018-4

Keywords

Navigation