Skip to main content
Log in

Structural modelling of the LiCl aqueous solution by the hybrid reverse Monte Carlo (HRMC) simulation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the hybrid reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints of the pair correlation functions and average coordination. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Harsányi, L. Temleitner, B. Beuneu, L. Pusztai, J. Mol. Liq. 165, 94 (2012)

    Article  Google Scholar 

  2. I. Harsányi, Ph.A. Bopp, A. Vrhovšek, L. Pusztai, J. Mol. Liq. 158, 61 (2011)

    Article  Google Scholar 

  3. K. Winkel, M. Seidl, T. Loerting, L.E. Bove, S. Imberti, V. Molinero, F. Bruni, R. Mancinelli, M.A. Ricci, J. Chem. Phys. 134, 024515 (2011)

    Article  ADS  Google Scholar 

  4. I. Harsányi, L. Pusztai, J. Chem. Phys. 122, 124512 (2005)

    Article  ADS  Google Scholar 

  5. M.V. Fedotova, R.D. Oparin, V.N. Trostin, J. Struct. Chem. 43, 473 (2002)

    Article  Google Scholar 

  6. J.F. Jal, K. Soper, P. Carmona, J. Dupuy, J. Phys: Condens. Matter 3, 551 (1991)

    Article  ADS  Google Scholar 

  7. J. Dupuy-Philon, J.F. Jal, B. Prvel, J. Mol. Liq. 64, 13 (1995)

    Article  Google Scholar 

  8. B. Prvel, J.F. Jal, J. Dupuy-Philon, A.K. Soper, J. Chem. Phys. 103, 1886 (1995)

    Article  ADS  Google Scholar 

  9. A. Aouizerat-Elarby, H. Dez, B. Prevel, J.F. Jal, J. Bert, J. Dupuy-Philon, J. Molec. Liq. 84, 289 (2000)

    Article  Google Scholar 

  10. R.L. Mc Greevy, L. Pusztai, Molec. Simul. 1, 359 (1988)

    Article  Google Scholar 

  11. M. Kotbi, H. Xu, Mol. Phys. 94, 373 (1998)

    Google Scholar 

  12. M. Kotbi, H. Xu, M. Habchi, Z. Dembahri, Phys Lett. A, 315, 463 (2003)

    Google Scholar 

  13. G. Opletal, T. Petersen, B. O’Malley, I. Snook, D.G. McCulloch, N.A. Marks, I. Yarovsky, Molec. Simul. 28, 927 (2002)

    Article  Google Scholar 

  14. T. Petersen, I. Yarovsky, I. Snook, D.G. McCulloch, G. Opletal, Carbon 41, 2403 (2003)

    Article  Google Scholar 

  15. G. Opletal, T.C. Petersen, D.G. McCulloch, I.K. Snook, I. Yarovsky, J. Phys.: Condens. Matter 17, 2605 (2005)

    Article  ADS  Google Scholar 

  16. J. Pikunic, C. Clinard, N. Cohaut, K.E. Gubbins, J.-M. Guet, R.J.-M. Pellenq, I. Rannou, J.N. Rouzaud, Langmuir 19, 8565 (2003)

    Article  Google Scholar 

  17. R. Evans, Molec. Simul. 4, 409 (1990)

    Article  Google Scholar 

  18. R.L. Mc Greevy, J. Cond. Matter 13, R877 (2001)

    Article  ADS  Google Scholar 

  19. G. Opletal, T.C. Petersen, B. O’Malley, I.K. Snook, D.G. McCulloch, I. Yarovsky, Comput. Phys. Commun. 178, 777 (2008)

    Article  ADS  MATH  Google Scholar 

  20. R.L. Mc Greevy, P. Zetterstrm, Curr. Opin. Solid State Mater. Sci. 7, 41 (2003)

    Article  ADS  Google Scholar 

  21. W.M. Bartczac, J. Kroh, M. Zapalowzki, K. Pernal, Philos. Trans. Roy. Soc. Lond. 359, 1539 (2009)

    Google Scholar 

  22. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. Chem. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  23. S. Phatisena, J. Sci. Soc. Thailand 13, 221 (1987)

    Article  Google Scholar 

  24. M.R. Setare, S. Haidari, Phys. Scr. 81, 065201 (2010)

    Article  ADS  Google Scholar 

  25. P. Bopp, G. Jancs, K. Heinzinger, Chem. Phys. Lett. 98, 129 (1983)

    Article  ADS  Google Scholar 

  26. NATO Adv. Sci. Inst. Ser. C, Mathematical and Physical Science, edited by M.C. Bellissent-Funel, G.W. Neilson (Kluwer Academic, Dordrecht, 1986), Vol. 205

  27. R. Bellissent, C. Bergman, R. Ceolin, J.P. Gaspard, Phys. Rev. Lett. 59, 661 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Habchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habchi, M., Mesli, S.M., Kotbi, M. et al. Structural modelling of the LiCl aqueous solution by the hybrid reverse Monte Carlo (HRMC) simulation. Eur. Phys. J. B 85, 255 (2012). https://doi.org/10.1140/epjb/e2012-21027-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-21027-2

Keywords

Navigation