Skip to main content
Log in

Wang-Landau study of the 3D Ising model with bond disorder

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes L in the range \(L=8{-}64\). We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spin glasses and random fields, edited by A.P. Young (World Scientific, Singapore, 1998)

  2. M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Aizenman, J. Wehr, Phys. Rev. Lett. 64, 1311(E) (1990)

  4. K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)

    Article  ADS  Google Scholar 

  5. K. Hui, A.N. Berker, Phys. Rev. Lett. 63, 2433(E) (1989)

  6. S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. Lett. 69, 1213 (1992)

    Article  ADS  Google Scholar 

  7. J. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C. Chatelain, B. Berche, Phys. Rev. Lett. 80, 1670 (1998)

    Article  ADS  Google Scholar 

  9. A.B. Harris, J. Phys. C 7, 1671 (1974)

    Article  ADS  Google Scholar 

  10. J.T. Chayes, L. Chayes, D.S. Fisher, T. Spencer, Phys. Rev. Lett. 57, 2999 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455, 701 (1995)

    Article  ADS  Google Scholar 

  12. J.L. Jacobsen, J. Cardy, Nucl. Phys. B 515, 701 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. Mazzeo, R. Kühn, Phys. Rev. E 60, 3823 (1999)

    Article  ADS  Google Scholar 

  14. A. Gordillo-Guerrero, R. Kenna, J.J.R. Lorenzo, AIP Conf. Proc. 1198, 42 (2009)

    Article  ADS  Google Scholar 

  15. D.P. Landau, Phys. Rev. B 22, 2450 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Chowdhury, D. Stauffer, J. Stat. Phys. 44, 203 (1986)

    Article  ADS  Google Scholar 

  17. H.-O. Heuer, Europhys. Lett. 12, 551 (1990)

    Article  ADS  Google Scholar 

  18. H.-O. Heuer, Phys. Rev. B 42, 6476 (1990)

    Article  ADS  Google Scholar 

  19. H.-O. Heuer, J. Phys. A 26, L333 (1993)

    Article  ADS  Google Scholar 

  20. M. Hennecke, Phys. Rev. B 48, 6271 (1993)

    Article  ADS  Google Scholar 

  21. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998)

    Article  ADS  Google Scholar 

  22. S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998)

    Article  ADS  Google Scholar 

  23. P. Calabrese, V. Martín-Mayor, A. Pelissetto, E. Vicari, Phys. Rev. E 68, 036136 (2003)

    Article  ADS  Google Scholar 

  24. M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, E. Vicari, J. Stat. Mech. P02016 (2007)

  25. P.E. Berche, C. Chatelain, B. Berche, W. Janke, Eur. Phys. J. B 38, 463 (2004)

    Article  ADS  Google Scholar 

  26. R. Folk, Y. Holovatch, T. Yavorskii, Phys. Rev. B 61, 15114 (2000)

    Article  ADS  Google Scholar 

  27. D.V. Pakhnin, A.I. Sokolov, Phys. Rev. B 61, 15130 (2000)

    Article  ADS  Google Scholar 

  28. A. Pelissetto, E. Vicari, Phys. Rev. B 62, 6393 (2000)

    Article  ADS  Google Scholar 

  29. K.E. Newman, E.K. Riedel, Phys. Rev. B 25, 264 (1982)

    Article  ADS  Google Scholar 

  30. G. Jug, Phys. Rev. B 27, 609 (1983)

    Article  ADS  Google Scholar 

  31. I.O. Mayer, J. Phys. A 22, 2815 (1989)

    Article  ADS  Google Scholar 

  32. R. Guida, J. Zinn-Justin, J. Phys. A 31, 8103 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A.K. Murtazaev, A.B. Babaev, J. Magn. Magn. Mater. 321, 2630 (2009)

    Article  ADS  Google Scholar 

  34. N.G. Fytas, P.E. Theodorakis, Phys. Rev. E 82, 062101 (2010)

    Article  ADS  Google Scholar 

  35. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999)

  36. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  37. F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  38. A. Malakis, A. Peratzakis, N.G. Fytas, Phys. Rev. E 70, 066128 (2004)

    Article  ADS  Google Scholar 

  39. A. Malakis, S.S. Martinos, I.A. Hadjiagapiou, N.G. Fytas, P. Kalozoumis, Phys. Rev. E 72, 066120 (2005)

    Article  ADS  Google Scholar 

  40. A. Malakis, N.G. Fytas, Phys. Rev. E 73, 016109 (2006)

    Article  ADS  Google Scholar 

  41. N.G. Fytas, A. Malakis, K. Eftaxias, J. Stat. Mech. P03015 (2008)

  42. N.G. Fytas, A. Malakis, I.A. Hadjiagapiou, J. Stat. Mech. P11009 (2008)

  43. A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, T. Papakonstantinou, Phys. Rev. E 81, 041113 (2010)

    Article  ADS  Google Scholar 

  44. N.G. Fytas, A. Malakis, Phys. Rev. E 81, 041109 (2010)

    Article  ADS  Google Scholar 

  45. R.E. Belardinelli, V.D. Pereyra, Phys. Rev. E 75, 046701 (2007)

    Article  ADS  Google Scholar 

  46. A. Aharony, A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996)

    Article  ADS  Google Scholar 

  47. K. Bernardet, F. Pázmándi, G.G. Batrouni, Phys. Rev. Lett. 84, 4477 (2000)

    Article  ADS  Google Scholar 

  48. A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 44, 5081 (1991)

    Article  ADS  Google Scholar 

  49. R.L.C. Vink, T. Fischer, K. Binder, Phys. Rev. E 82, 051134 (2010)

    Article  ADS  Google Scholar 

  50. N. Sourlas, Comput. Phys. Commun. 121, 183 (1999)

    Article  ADS  Google Scholar 

  51. N.G. Fytas, A. Malakis, Eur. Phys. J. B 79, 13 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. E. Theodorakis or N. G. Fytas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodorakis, P.E., Fytas, N.G. Wang-Landau study of the 3D Ising model with bond disorder. Eur. Phys. J. B 81, 245–251 (2011). https://doi.org/10.1140/epjb/e2011-20091-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20091-4

Keywords

Navigation