Skip to main content
Log in

Unravelling the size distribution of social groups with information theory in complex networks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The minimization of Fisher’s information (MFI) approach of Frieden et al. [Phys. Rev. E 60, 48 (1999)] is applied to the study of size distributions in social groups on the basis of a recently established analogy between scale invariant systems and classical gases [Phys. A 389, 490 (2010)]. Going beyond the ideal gas scenario is seen to be tantamount to simulating the interactions taking place, for a competitive cluster growth process, in a scale-free ideal network – a non-correlated network with a connection-degree’s distribution that mimics the scale-free ideal gas density distribution. We use a scaling rule that allows one to classify the final cluster-size distributions using only one parameter that we call the competitiveness, which can be seen as a measure of the strength of the interactions. We find that both empirical city-size distributions and electoral results can be thus reproduced and classified according to this competitiveness-parameter, that also allow us to infer the maximum number of stable social relationships that one person can maintain, known as the Dunbar number, together with its standard deviation. We discuss the importance of this number in connection with the empirical phenomenon known as “six-degrees of separation”. Finally, we show that scaled city-size distributions of large countries follow, in general, the same universal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Batty, Science 319, 769 (2008)

    Article  ADS  Google Scholar 

  2. A. Blank, S. Solomon, Physica A 287, 279 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. X. Gabaix, Y.M. Ioannides, Handbook of Regional and Urban Economics (North-Holland, Amsterdam, 2004), Vol. 4

  4. W.J. Reed, J. Reg. Sci. 42, 1 (2002)

    Article  Google Scholar 

  5. M.E.J. Newman, Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  6. V. Pareto, Cours d`Economie Politique (Droz, Geneva, 1896)

  7. G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, MA, 1949)

  8. L.C. Malacarne, R.S. Mendes, E.K. Lenzi, Phys. Rev. E 65, 017106 (2001)

    Article  ADS  Google Scholar 

  9. M. Marsili, Y.-C. Zhang, Phys. Rev. Lett. 80, 2741 (1998)

    Article  ADS  Google Scholar 

  10. R.L. Axtell, Science 293, 1818 (2001)

    Article  ADS  Google Scholar 

  11. K. Paech, W. Bauer, S. Pratt, Phys. Rev. C 76, 054603 (2007)

    Article  ADS  Google Scholar 

  12. X. Campi, H. Krivine, Phys. Rev. C 72, 057602 (2005)

    Article  ADS  Google Scholar 

  13. Y.G. Ma et al., Phys. Rev. C 71, 054606 (2005)

    Article  ADS  Google Scholar 

  14. C. Furusawa, K. Kaneko, Phys. Rev. Lett. 90, 088102 (2003)

    Article  ADS  Google Scholar 

  15. I. Kanter, D.A. Kessler, Phys. Rev. Lett. 74, 4559 (1995)

    Article  ADS  Google Scholar 

  16. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)

    Article  ADS  Google Scholar 

  17. A. Hernando, D. Puigdomènech, D. Villuendas, C. Vesperinas, A. Plastino, Phys. Lett. A 374, 18 (2009)

    Article  ADS  Google Scholar 

  18. R. Albert, A.L. Barabási, Rev. Mod. Phys. 2074, 2047 (2002)

    Google Scholar 

  19. M.E.J. Newman, A.L. Barabasi, D.J. Watts, The Structure and Dynamics of Complex Networks (Princeton University Press, Princeton, 2006)

  20. T. Maillart, D. Sornette, S. Spaeth, G. von Krogh, Phys. Rev. Lett. 101, 218701 (2008)

    Article  ADS  Google Scholar 

  21. R.N. Costa Filho, M.P. Almeida, J.S. Andrade, J.E. Moreira, Phys. Rev. E 60, 1067 (1999)

    Article  ADS  Google Scholar 

  22. A. Hernando, C. Vesperinas, A. Plastino, Phys. A 389, 490 (2010)

    Article  Google Scholar 

  23. R. Frieden, A. Plastino, A.R. Plastino, B.H. Soffer, Phys. Rev. E 60, 48 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. UrbanSim: http://www.urbansim.org, SLEUTH: http://www.ncgia.ucsb.edu/projects/gig/, DUEM: http://www.casa.ucl.ac.uk/software/duem.asp

  25. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  26. S. Fortunato, C. Castellano, Phys. Rev. Lett. 99, 138701 (2007)

    Article  ADS  Google Scholar 

  27. M. Batty, Cities and Complexity: Understanding Cities Through Cellular Automata, Agent-Based Models, and Fractals (MIT Press, Cambridge, MA, 2005)

  28. H. Gould, J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems, 2nd edn. (Addison-Wesley, 1996)

  29. W.J. Reed, B.D. Hughes, Phys. Rev. E. 66, 067103 (2002)

    Article  ADS  Google Scholar 

  30. R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  31. R. Guimerà, R.L. Danon, A. Díaz-Guilera, F. Giralt, A. Arenas, Phys. Rev. E 68, 065103(R) (2003)

    Article  ADS  Google Scholar 

  32. J. Leskovec, E. Horvitz (2008), e-print arXiv:0803.0939v1

  33. K. Christensen, H. Flyvbjerg, Z. Olami, Phys. Rev. Lett. 71, 2737 (1993)

    Article  ADS  Google Scholar 

  34. A. Mezhlumian, S.A. Molchanov, J. Stat. Phys. 71, 799 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. S. Zapperi, K.B. Lauritsen, H.E. Stanley, Phys. Rev. Lett. 75, 4071 (1995)

    Article  ADS  Google Scholar 

  36. A.A. Moreira, D.R. Paula, R.N.C. Filho, J.S. Andrade, Phys. Rev. E 73, 065101(R) (2006)

    Article  ADS  Google Scholar 

  37. M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  39. B.R. Frieden, B.H. Soffer, Phys. Rev. E 52, 2274 (1995)

    Article  ADS  Google Scholar 

  40. B.R. Frieden, Physics from Fisher Information, 2nd edn. (Cambridge Univ. Press, Cambridge, 1998)

  41. B.R. Frieden, Science from Fisher Information (Cambridge Univ. Press, Cambridge, 2004)

  42. M. Batty, Nature 444, 592 (2006)

    Article  ADS  Google Scholar 

  43. R. Toral, C.J. Tessone, Commun. Comput. Phys. 2, 177 (2007)

    MathSciNet  Google Scholar 

  44. A. Clauset, C.R. Shalizi, M.E.J. Newman (2009), e-print arXiv:0706.1062v2

  45. National Statistics Institute of Spain website, Government of Spain, (www.ine.es)

  46. L. Valitova, V. Tambovtsev, Regional policy priorities in Russia: empirical evidence, RECEP Reports (2005), Vol. 5, p. 9

  47. M. Gladwell, The Tipping Point – How Little Things Make a Big Difference (Little, Brown and Company, 2000)

  48. R.I.M. Dunbar, J. Hum. Evo. 20, 469 (1992)

    Article  Google Scholar 

  49. R.I.M. Dunbar, Beh. Brain Sci. 16, 681 (1993)

    Article  Google Scholar 

  50. Census bureau website, Government of USA, www.census.gov

  51. J. Travers, S. Milgram, Sociometry 32, 425 (1969)

    Article  Google Scholar 

  52. D.J. Watts, Six Degrees: The Science of a Connected Age (Norton, New York, 2003)

  53. D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 1999)

  54. P.S. Dodds, R. Muhamad, D.J. Watts, Science 301, 827 (2003)

    Article  ADS  Google Scholar 

  55. Electoral Commission, Government of UK, http://www.electoralcommission.org.uk

  56. National Archives and Records Administration, Government of USA. www.archives.gov

  57. Ministero dell’Interno – Elezioni Politiche, Government of Italy. politiche.interno.it

  58. Ministerio del Interior, Elecciones, Government of Spain. www.elecciones.mir.es

  59. UK Statistics Authority, www.statistics.gov.uk

  60. Wolfram Mathematica CityData Source, based on a wide range of sources. www.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Hernando or A. Plastino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernando, A., Villuendas, D., Vesperinas, C. et al. Unravelling the size distribution of social groups with information theory in complex networks. Eur. Phys. J. B 76, 87–97 (2010). https://doi.org/10.1140/epjb/e2010-00216-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00216-1

Keywords

Navigation