Skip to main content
Log in

Response of La0.8Sr0.2CoO3-δ to perturbations on the CoO3 sublattice

  • Solids and Liquids
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Emission and transmission Mössbauer studies of La0.8Sr0.2CoO3-δ perovskites doped with ∼0.02 stoichiometric units of oxygen vacancy or 2.5% iron corroborate the occurrence of electronic phase separation in these systems. The effect of the small perturbation of the CoO3 sublattice with either iron ions or oxygen vacancies on the bulk magnetization as well as on the Mössbauer spectra is in good agreement with the double exchange based cluster model. The magnetoresistance does not show any peak near the Curie temperature, but reaches -84% in a field of 7.5 T at T = 8 K. Below TC ≈ 180 K the Mössbauer spectra distinctly include the contribution from paramagnetic and ferromagnetic regions, providing direct evidence for phase separation. No contribution to the spectra from Fe4+ ions can be observed, which is an unambiguous evidence that at low concentration iron (either directly doped or formed from 57Co by nuclear decay) is accommodated in the cobaltate lattice as Fe3+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. Golovanov, L. Mihály, A.R. Moodenbaugh, Phys. Rev. B 53, 8207 (1996)

    Article  ADS  Google Scholar 

  • R. Mahendiran, A.K. Raychaudhuri, Phys. Rev. B 54, 16044 (1996)

    Article  ADS  Google Scholar 

  • S. Yamaguchi, H. Taniguchi, H. Takagi, T. Arima, Y. Tokura, J. Phys. Soc. Jpn 64, 1885 (1995)

    Article  ADS  Google Scholar 

  • J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003)

    Article  ADS  Google Scholar 

  • A.V. Samoilov, G. Beach, C.C. Fu, N.-C. Yeh, R.P. Vasquez, J. Appl. Phys. 83, 6998 (1998)

    Article  ADS  Google Scholar 

  • K. Muta, Y. Kobayashi, K. Asai, J. Phys. Soc. Jap. 71, 2784 (2002)

    Article  ADS  Google Scholar 

  • A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, M. Kawase, J. Solid State Chem. 121, 423 (1996)

    Article  Google Scholar 

  • A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, P. Kofstad, Solid State Ionics 80, 189 (1995)

    Article  Google Scholar 

  • K. Asai, O. Yokokura, N. Nishimori, H. Chou, J.M. Tranquada, G. Shirane, S. Higuchi, Y. Okajima, K. Kohn, Phys. Rev. B 50, 3025 (1994)

    Article  ADS  Google Scholar 

  • D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96, 027201 (2006)

    Article  ADS  Google Scholar 

  • M.A. Señaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 118, 323 (1995)

    Article  Google Scholar 

  • Y. Tang, Y. Sun, Z. Cheng, Phys. Rev. B 73, 012409 (2006)

    Article  ADS  Google Scholar 

  • J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton, Phys. Rev. Lett. 94, 037201 (2005)

    Article  ADS  Google Scholar 

  • P.L. Kuhns, M.J.R. Hoch, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton, Phys. Rev. Lett. 91, 127202 (2003)

    Article  ADS  Google Scholar 

  • M.J.R. Hoch, P.L. Kuhns, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton, Phys. Rev. B 69, 014425 (2004)

    Article  ADS  Google Scholar 

  • A. Barman, M. Ghosh, S. Biswas, S.K. De, S. Chatterjee, Appl. Phys. Lett. 71, 3150 (1997)

    Article  ADS  Google Scholar 

  • Á. Cziráki, I. Gerõcs, M. Köteles, A. Gábris, L. Pogány, I. Bakonyi, Z. Klencsár, A. Vértes, S.K. De, A. Barman, M. Ghosh, S. Biswas, S. Chatterjee, B. Arnold, H.D. Bauer, K. Wetzig, C. Ulhaq-Bouillet, V. Pierron-Bohnes, Eur. Phys. J. B 21, 521 (2001)

    Article  ADS  Google Scholar 

  • Y. Sun, Xiaojun Xu, Y. Zhang, Phys. Rev. B 62, 5289 (2000)

    Article  ADS  Google Scholar 

  • Z. Németh, Z. Klencsár, E. Kuzmann, Z. Homonnay, A. Vértes, J.M. Greneche, B. Lackner, K. Kellner, G. Gritzner, J. Hakl, K. Vad, S. Mészáros, L. Kerekes, Eur. Phys. J. B 43, 297 (2005)

    Article  ADS  Google Scholar 

  • M. Itok, I. Natori, S. Kubota, K. Motoya, J. Phys. Soc. Jpn 63, 1486 (1994)

    Article  ADS  Google Scholar 

  • Z. Németh, Z. Homonnay, F. Árva, Z. Klencsár, E. Kuzmann, J. Hakl, K. Vad, S. Mészáros, G. Gritzner, A. Vértes, J. Radioanal. Nucl. Chem. 271, 11 (2007)

    Article  Google Scholar 

  • Z. Klencsár, E. Kuzmann, A. Vértes, J. Radioanal. Nucl. Chem. 210, 105 (1996)

    Article  Google Scholar 

  • Z. Homonnay, Z. Klencsár, E. Kuzmann, Z. Németh, P. Rajczy, K. Kellner, G. Gritzner, A. Vértes, Sol. State Phen. 90–91, 165 (2003)

    Google Scholar 

  • U. Shimony, J.M. Knudsen, Phys. Rev. 144 361 (1966)

    Google Scholar 

  • M. Kopcewicz, D.V. Karpinsky, I.O. Troyanchuk, J. Phys. Cond. Mat. 17 7743 (2005)

    Google Scholar 

  • H.M. Aarbogh, J. Wu, L. Wang, H. Zheng, J.F. Mitchell, C. Leigthon, Phys. Rev. B 74, 134408 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Németh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Németh, Z., Homonnay, Z., Árva, F. et al. Response of La0.8Sr0.2CoO3-δ to perturbations on the CoO3 sublattice. Eur. Phys. J. B 57, 257–263 (2007). https://doi.org/10.1140/epjb/e2007-00172-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00172-9

PACS.

Navigation