Skip to main content

Advertisement

Log in

Symmetry energy, unstable nuclei and neutron star crusts

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Heiselberg, V.R. Pandharipande, Annu. Rev. Nucl. Part. Sci. 50, 481 (2000).

    Article  ADS  Google Scholar 

  2. T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013).

    Article  ADS  Google Scholar 

  3. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 31, 337 (1981).

    Article  ADS  Google Scholar 

  4. J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003).

    Article  ADS  Google Scholar 

  5. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981).

    Article  ADS  Google Scholar 

  6. K. Oyamatsu, K. Iida, Prog. Theor. Phys. 109, 631 (2003).

    Article  ADS  MATH  Google Scholar 

  7. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  8. K. Oyamatsu, Nucl. Phys. A 561, 431 (1993).

    Article  ADS  Google Scholar 

  9. I.E. Lagaris, V.R. Pandharipande, Nucl. Phys. A 369, 470 (1981).

    Article  ADS  Google Scholar 

  10. K. Oyamatsu, K. Iida, Phys. Rev. C 75, 015801 (2007).

    Article  ADS  Google Scholar 

  11. A.R. Bodmer, Q.N. Usmani, Phys. Rev. C 67, 034305 (2003).

    Article  ADS  Google Scholar 

  12. L.R.B. Elton, A. Swift, Nucl. Phys. A 94, 52 (1967).

    Article  ADS  Google Scholar 

  13. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  ADS  Google Scholar 

  14. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  15. A. Ozawa et al., Phys. Lett. B 334, 18 (1994).

    Article  ADS  Google Scholar 

  16. L. Chulkov et al., Nucl. Phys. A 603, 219 (1996).

    Article  ADS  Google Scholar 

  17. A. Ozawa et al., Nucl. Phys. A 709, 60 (2002).

    Article  ADS  Google Scholar 

  18. M. Farine, J.M. Pearson, B. Rouben, Nucl. Phys. A 304, 317 (1978).

    Article  ADS  Google Scholar 

  19. S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012).

    Article  ADS  Google Scholar 

  20. M. Kortelainen, T. Lesinski, J. Moré, W. Nararewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010).

    Article  ADS  Google Scholar 

  21. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012).

    Article  ADS  Google Scholar 

  22. J.P. Blaizot, Phys. Rep. 64, 171 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  23. J.B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada, J. Wang, Phys. Rev. Lett. 89, 212701 (2002).

    Article  ADS  Google Scholar 

  24. E. Khan, J. Margueron, Phys. Rev. C 88, 034319 (2013).

    Article  ADS  Google Scholar 

  25. A. Kohama, K. Iida, K. Oyamatsu, Phys. Rev. C 69, 064316 (2004).

    Article  ADS  Google Scholar 

  26. C.J. Batty, E. Friedman, H.J. Gils, H. Rebel, Adv. Nucl. Phys. 19, 1 (1989).

    Google Scholar 

  27. X. Roca-Maza, M. Centelles, X. Viñas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011).

    Article  ADS  Google Scholar 

  28. M. Yamada, Prog. Theor. Phys. 32, 512 (1964).

    Article  ADS  Google Scholar 

  29. K. Iida, K. Oyamatsu, Phys. Rev. C 69, 037301 (2004).

    Article  ADS  Google Scholar 

  30. L. Ray, G.W. Hoffmann, W.R. Coker, Phys. Rep. 212, 223 (1992).

    Article  ADS  Google Scholar 

  31. R.J. Glauber, in Lectures in Theoretical Physics, edited by W.E. Brittin, L.C. Dunham, Vol. 1 (Interscience, New York, 1959) p. 315.

  32. K. Iida, K. Oyamatsu, B. Abu-Ibrahim, Phys. Lett. B 576, 273 (2003).

    Article  ADS  Google Scholar 

  33. I. Ahmad, Nucl. Phys. A 247, 418 (1975).

    Article  ADS  Google Scholar 

  34. L. Ray, Phys. Rev. C 20, 1857 (1979).

    Article  ADS  Google Scholar 

  35. L. Ray, W.R. Coker, G.W. Hoffmann, Phys. Rev. C 18, 2641 (1978).

    Article  ADS  Google Scholar 

  36. K. Iida, K. Oyamatsu, B. Abu-Ibrahim, A. Kohama, Prog. Theor. Phys. 126, 1091 (2011).

    Article  ADS  Google Scholar 

  37. A. Ingemarsson, M. Lantz, Phys. Rev. C 72, 064615 (2005).

    Article  ADS  Google Scholar 

  38. K. Iida, A. Kohama, K. Oyamatsu, J. Phys. Soc. Jpn. 76, 044201 (2007).

    Article  ADS  Google Scholar 

  39. A. Kohama, K. Iida, K. Oyamatsu, Phys. Rev. C 78, 061601(R) (2008).

    Article  ADS  Google Scholar 

  40. I.S. Novikov, Y. Shabelski, arXiv:1302.3930.

  41. K. Oyamatsu, K. Iida, Phys. Rev. C 81, 054302 (2010).

    Article  ADS  Google Scholar 

  42. K. Oyamatsu, K. Iida, H. Koura, Phys. Rev. C 82, 027301 (2010).

    Article  ADS  Google Scholar 

  43. H. Koura, T. Tachibana, M. Uno, M. Yamada, Prog. Theor. Phys. 113, 305 (2005).

    Article  ADS  Google Scholar 

  44. Chart of the Nuclides 2004, compiled by T. Horiguchi, JNDC and Nuclear Data Center, JAERI (2005).

  45. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  46. M. Notani et al., Phys. Rev. C 76, 044605 (2007).

    Article  ADS  Google Scholar 

  47. T. Baumann et al., Nature (London) 449, 1022 (2007).

    Article  ADS  Google Scholar 

  48. C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995).

    Article  ADS  Google Scholar 

  49. N. Chamel, P. Haensel, Living Rev. Relativ. 11, 10 (2008).

    Article  ADS  Google Scholar 

  50. K. Oyamatsu, M. Hashimoto, M. Yamada, Prog. Theor. Phys. 72, 373 (1984).

    Article  ADS  Google Scholar 

  51. T. Maruyama, G. Watanabe, S. Chiba, Prog. Theor. Exp. Phys. 1, 01A201 (2012).

    Google Scholar 

  52. W.G. Newton, J.R. Stone, Phys. Rev. C 79, 055801 (2009).

    Article  ADS  Google Scholar 

  53. H. Pais, J.R. Stone, Phys. Rev. Lett. 109, 151101 (2012).

    Article  ADS  Google Scholar 

  54. F. Sébille, S. Figerou, V. de la Mota, Nucl. Phys. A 822, 51 (2009).

    Article  ADS  Google Scholar 

  55. F. Sébille, V. de la Mota, S. Figerou, Phys. Rev. C 84, 055801 (2011).

    Article  ADS  Google Scholar 

  56. B. Schuetrumpf, M.A. Klatt, K. Iida, J.A. Maruhn, K. Mecke, P.-G. Reinhard, Phys. Rev. C 87, 055805 (2013).

    Article  ADS  Google Scholar 

  57. K. Nakazato, K. Oyamatsu, S. Yamada, Phys. Rev. Lett. 103, 132501 (2009).

    Article  ADS  Google Scholar 

  58. K. Nakazato, K. Iida, K. Oyamatsu, Phys. Rev. C 83, 065811 (2011).

    Article  ADS  Google Scholar 

  59. F.S. Bates, G.H. Fredrickson, Phys. Today 52, No. 2, 32 (1999).

    Article  ADS  Google Scholar 

  60. G. Watanabe, K. Iida, K. Sato, Nucl. Phys. A 676, 455 (2000) 726.

    Article  ADS  Google Scholar 

  61. W.G. Newton, M. Gearheart, D.H. Wen, B.A. Li, J. Phys.: Conf. Ser. 420, 012145 (2013).

    ADS  Google Scholar 

  62. A.L. Watts, T.E. Strohmayer, Adv. Space Res. 40, 1446 (2007).

    Article  ADS  Google Scholar 

  63. A.W. Steiner, A.L. Watts, Phys. Rev. Lett. 103, 181101 (2009).

    Article  ADS  Google Scholar 

  64. H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Phys. Rev. Lett. 108, 201101 (2012).

    Article  ADS  Google Scholar 

  65. H. Sotani, K. Nakazato, K. Iida, K. Oyamatsu, Mon. Not. R. Astron. Soc. 428, L21 (2013).

    Article  ADS  Google Scholar 

  66. T. Strohmayer, H.M. van Horn, S. Ogata, H. Iyetomi, S. Ichimaru, Astrophys. J. 375, 679 (1991).

    Article  ADS  Google Scholar 

  67. S. Ogata, S. Ichimaru, Phys. Rev. A 42, 4867 (1990).

    Article  ADS  Google Scholar 

  68. C.J. Pethick, A.Y. Potekhin, Phys. Lett. B 427, 7 (1998).

    Article  ADS  Google Scholar 

  69. B.L. Schumaker, K.S. Thorne, Mon. Not. R. Astron. Soc. 203, 457 (1983).

    ADS  MathSciNet  Google Scholar 

  70. G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971).

    Article  ADS  Google Scholar 

  71. C.J. Horowitz, J. Hughto, arXiv:0812.2650.

  72. A.T. Deibel, A.W. Steiner, E.F. Brown, arXiv:1303.3270.

  73. N. Chamel, Phys. Rev. C 85, 035801 (2012).

    Article  ADS  Google Scholar 

  74. C.J. Pethick, N. Chamel, S. Reddy, Prog. Theor. Phys. Suppl. 186, 9 (2010).

    Article  ADS  MATH  Google Scholar 

  75. A. Passamonti, S.K. Lander, Mon. Not. R. Astron. Soc. 429, 767 (2013).

    Article  ADS  Google Scholar 

  76. M. Gabler, P. Cerdá-Durán, N. Stergioulas, J.A. Font, E. Müller, arXiv:1304.3566.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Iida.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Àngels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, K., Oyamatsu, K. Symmetry energy, unstable nuclei and neutron star crusts. Eur. Phys. J. A 50, 42 (2014). https://doi.org/10.1140/epja/i2014-14042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14042-9

Keywords

Navigation