Skip to main content
Log in

Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The axisymmetric time-fractional diffusion-wave equation with the Caputo derivative of the order 0 < α ≤ 2 is considered in a cylinder under the prescribed linear combination of the values of the sought function and the values of its normal derivative at the boundary. The fundamental solutions to the Cauchy, source, and boundary problems are investigated. The Laplace transform with respect to time and finite Hankel transform with respect to the radial coordinate are used. The solutions are obtained in terms of Mittag-Leffler functions. The numerical results are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997), p. 291

  2. Yu.A. Rossikhin, M.V. Shitikova, Appl. Mech. Rev. 50, 15 (1997)

    Article  ADS  Google Scholar 

  3. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. G.M. Zaslavsky, Phys. Rep. 371, 461 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, New York, 2005)

  7. Y.Z. Povstenko, J. Thermal Stresses 28, 83 (2005)

    Article  MathSciNet  Google Scholar 

  8. R.L. Magin, Fractional Calculus in Bioengineering (Begel House Publishers, Inc., Connecticut, 2006)

  9. V.V. Uchaikin, Method of Fractional Derivatives (Arteshock, Ulyanovsk, 2008) (in Russian)

  10. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)

  11. M. Edelman, Commun. Nonlinear Sci. Numer. Simulat. 16, 4573 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. W. Wyss, J. Math. Phys. 27, 2782 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Y. Fujita, Osaka J. Math. 27, 309 (1990)

    MathSciNet  MATH  Google Scholar 

  15. F. Mainardi, Appl. Math. Lett. 9, 23 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. B.N. Narahari Achar, J.W. Hanneken, J. Mol. Liq. 114, 147 (2004)

    Article  Google Scholar 

  17. Y.Z. Povstenko, J. Mol. Liq. 137, 46 (2008)

    Article  Google Scholar 

  18. Y.Z. Povstenko, Fract. Calc. Appl. Anal. 14, 418 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Y. Povstenko, Arch. Appl. Mech. 82, 345 (2012a)

    Article  ADS  Google Scholar 

  20. N. Özdemir, D. Karadeniz, Phys. Lett. A 372, 5968 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. N. Özdemir, D. Karadeniz, B.B. Iskender, Phys. Lett. A 373, 221 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. N. Özdemir, O.P. Agrawal, D. Karadeniz, B.B. Iskender, Phys. Scr. T 136, 014024 (2009)

    Article  ADS  Google Scholar 

  23. H. Qi, J. Liu, Meccanica 45, 577 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, Comp. Math. Math. Phys. 50, 1141 (2010)

    Article  MathSciNet  Google Scholar 

  25. J. Kemppainen, Abstr. Appl. Anal. 2011, 321903 (2011)

    Article  MathSciNet  Google Scholar 

  26. Y.Z. Povstenko, Int. J. Diff. Equat. 2012, 154085 (2012)

    MathSciNet  Google Scholar 

  27. Y.Z. Povstenko, in Proceedings of the 13th International Carpathian Control Conference, edited by I. Petráš, I. Podlubny, K. Kostúr, A. Mojžišová, J. Kačur (High Tatras, Slovak Republic, 2012), p. 588

  28. R.K. Saxena, A.M. Mathai, H.J. Haubold, Astrophys. Space Sci. 305, 289 (2006)

    Article  ADS  MATH  Google Scholar 

  29. V. Gafiychuk, B. Datsko, V. Meleshko, J. Comput. Appl. Math., 220, 215 (2008)

    Google Scholar 

  30. V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Chaos, Solitons Fractals 41, 1095 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function, Theory and Applications (Springer, New York, 2010)

  32. V. Méndez, S. Fedotov, W. Horsthemke, Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities (Springer, Berlin, 2010)

  33. R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997), p. 223

  34. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier, 2006)

  35. I. Podlubny, Fractional Differential Equations (San Diego, Academic Press, 1999)

  36. A.S. Galitsyn, A.N. Zhukovsky, Integral Transforms and Special Functions in Heat Conduction Problems (Naukova Dumka, Kiev, 1976) (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Povstenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povstenko, Y. Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition. Eur. Phys. J. Spec. Top. 222, 1767–1777 (2013). https://doi.org/10.1140/epjst/e2013-01962-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01962-4

Keywords

Navigation