Skip to main content
Log in

Recent developments and projects in SANS instrumentation at LLB-Orphée

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This article presents an overview of the recent developments in SANS and GISANS instrumentation at LLB-Orphée. SANS is a well-known technique, especially well adapted for research in material sciences, soft matter and nanosciences, which has proved to be particularly powerful to study complex systems, from nm to μm, taking full advantage of isotopic labelling and contrast variation methods. In this article, two instruments will be described in some details: TPA, the new VSANS (Very-Small Angle Neutron Scattering) instrument which is now fully functional and PA20, the new SANS spectrometer under construction, which will extend LLB’s capabilities in terms of SANS for magnetism with a polarized neutron option and Grazing Incidence SANS (GISANS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orphée is a pool type reactor 14-MW power compact, light-water moderated, core provides up to 3 × 1014 n.cm−2s−1 thermal flux in the surrounding heavy water reflector tank. The LLB has at its disposal two cold sources (20 K liquid hydrogen) and one hot source (1400 K graphite)

  2. S.Désert, A.Gukasov, Neutron News 22, 14 (2011)

    Article  Google Scholar 

  3. S.Désert, V.Thévenot, J.Oberdisse, A.Brûlet, J. Appl. Cryst. 40, s471 (2007)

    Article  Google Scholar 

  4. S.Désert, V.Thévenot, A.Gabriel, P.Permingeat, J.Oberdisse, A.Brûlet, J. Appl. Cryst. 40, 945 (2007)

    Article  Google Scholar 

  5. see LLB spectrometers web site at: www-llb.cea.fr

  6. M.Shibayama, Poly. J. 43, 18 (2011)

    Article  Google Scholar 

  7. T.Karino, Y.Okumura, K.Ito, et al., Macromolecules 37, 6177 (2004)

    Article  ADS  Google Scholar 

  8. A.Michels, J.Weissmüller, Rep. Prog. Phys. 71, 066501 (2008)

    Article  ADS  Google Scholar 

  9. S.Sankar, et al., J. Mag. Magn. Mat. 221, 1 (2000)

    Article  ADS  Google Scholar 

  10. R.Gilles, et al., Physica B 385, 1174 (2006)

    Article  ADS  Google Scholar 

  11. R.Gilles, A.Ostermann, W.Petry, 2007, J. Appl. Cryst., doi: 10.1107/S0021889807006310

  12. C.D.Dewhurst, Meas. Sci. Technol. 19, 034007 (2008)

    Article  ADS  Google Scholar 

  13. F.Cousin, J.Gummel, D.Ung, et al., Langmuir 21, 9675 (2005)

    Article  Google Scholar 

  14. F.Gayet, C.El Kalamouni, P.Lavedan, J.-D.Marty, A.Brûlet, N.Lauth de Viguerie, Langmuir 25, 9741 (2009)

    Article  Google Scholar 

  15. W.Agut, A.Brûlet, C.Schatz, D.Taton, S.Lecommandoux, Langmuir 26, 10546 (2010)

    Article  Google Scholar 

  16. Y.B.Melnichenko, G.D.Wignall, J. Appl. Phys. 102, 021101 (2007)

    Article  ADS  Google Scholar 

  17. A.Wiedenmann, U.Keiderling, R.P.May, C.Dewhurst, Physica B 385, 453 (2006)

    Article  ADS  Google Scholar 

  18. I.Schmidt, F.Cousin, et al., Biomacromolecules 10, 1346 (2009)

    Article  Google Scholar 

  19. C.Sanson, C.Schatz, J.-F.Le Meins, A.Brûlet, A.Soum, S.Lecommandoux, Langmuir 26, 2751 (2010)

    Article  Google Scholar 

  20. C.Sanson, et al., ACS NANO 5, 1122 (2011)

    Article  Google Scholar 

  21. J.Jestin, F.Cousin, I.Dubois, et al., Adv. Mater. 20, 2533 (2008)

    Article  Google Scholar 

  22. J.Oberdisse, B.Deme, Macromolecules 35, (2002)

  23. N.Jouault, F.Dalmas, S.Said, et al., Physical Review E 82, 031801 (2010)

    Article  ADS  Google Scholar 

  24. M.H.Mathon, Y.de Carlan, G.Geoffroy, et al., J. Nucl. Mater. 312, 236 (2003)

    Article  ADS  Google Scholar 

  25. A.Brûlet, et al., J. Appl. Cryst. 41, 161 (2008)

    Article  Google Scholar 

  26. A.Wiedenmann, J. Appl. Cryst. 33, 428 (2000)

    Article  Google Scholar 

  27. A.Wiedenmann, et al., Phys. Rev. Lett. 97, 057202 (2006)

    Article  ADS  Google Scholar 

  28. A.Hamann, et al., Phys. Rev. Lett. 107, 037207 (2011)

    Article  ADS  Google Scholar 

  29. A.Pautrat, M.Aburas, C.Simon, et al., Phys. Rev. B 79, 184511 (2009)

    Article  ADS  Google Scholar 

  30. D.Saurel, C.Simon, A.Pautrat, et al., Phys. Rev. B 82, 054427 (2010)

    Article  ADS  Google Scholar 

  31. A.Wiedenmann, et al., Phys. Rev. B 77, 184417 (2008)

    Article  ADS  Google Scholar 

  32. Th.Maurer, et al., J. Appl. Phys. 110, 123924 (2011)

    Article  ADS  Google Scholar 

  33. G.Chaboussant, S.Désert, P.Lavie, A.Brûlet, J. Phys.: Conf. Series 340, 012002 (2012)

    Article  ADS  Google Scholar 

  34. F.Mezei, “Neutron Optical Devices”, SPIE Conferences Proceedings, edited by C.F.Majkrzak, Vol. 983 (SPIE, 1988), p. 10

  35. P.Böni, W.Munzer, A.Ostermann, Physica B 404, 2620 (2009)

    Article  ADS  Google Scholar 

  36. J.Stahn, D.Clemens, Appl. Phys. A: Mat. Sci. Proc. 74, s1532 (2002)

    Article  ADS  Google Scholar 

  37. M.James, A.Nelson, F.Klose, Neutron News 20, 21 (2009)

    Article  Google Scholar 

  38. P.Böni, D.Clemens, K.M.Senthil, S.Tixier, Physica B: Cond. Matt. 241-243, 1060 (1997)

    Article  Google Scholar 

  39. C.J.linka, J.M.Rowe, J.G.La Rock, J. Appl. Cryst. 19, 427 (1986)

    Article  Google Scholar 

  40. A.Len, G.Pépy, L.Rosta, Physica B 350, e771 (2004)

    Article  ADS  Google Scholar 

  41. W.G.Bouwman, C.P.Duif, J.Plomp, et al., Physica B-Cond. Matt. 406, 2357 (2011)

    Article  ADS  Google Scholar 

  42. S.M.Choi, et al., J. Appl. Cryst. 33, 793 (2000)

    Article  ADS  Google Scholar 

  43. M.R.Eskildsen, P.L.Gammel, E.D.Isaacs, Nature 391, 563 (1998)

    Article  ADS  Google Scholar 

  44. F.Ott, Modern Developments in X-Ray and Neutron Optics, Springer Series in Optical Sciences 137/2008, 113 (2008)

    Article  ADS  Google Scholar 

  45. P.Muller-Buschbaum, et al., Physica B 283, 53 (2000)

    Article  ADS  Google Scholar 

  46. P.Muller-Buschbaum, et al., Physica B 350, 207 (2004)

    Article  ADS  Google Scholar 

  47. F.Cousin, J.Jestin, G.Chaboussant, et al., Eur. Phys. J. Special Topics 167, 177 (2009)

    Article  ADS  Google Scholar 

  48. R.Steitz, P.Muller-Buschbaum, et al., Europhys. Lett. 67, 962 (2004)

    Article  ADS  Google Scholar 

  49. V.Leiner, H.Zabel, Phys. Rev. Lett. 92, 255501 (2004)

    Article  ADS  Google Scholar 

  50. M.Wolff, A.Magerl, H.Zabel, Eur. Phys. J. E 16, 141 (2005)

    Article  Google Scholar 

  51. V.Lauter-Pasyuk, et al., Langmuir 19, 7783 (2003)

    Article  Google Scholar 

  52. W.A.Hamilton, Curr. Opinion Coll. Interf. Sci. 9, 390 (2005)

    Article  Google Scholar 

  53. G.Renaud, R.Lazzari, F.Leroy, Surf. Sci. Reports 64, 255 (2009)

    Article  ADS  Google Scholar 

  54. J.P.Cotton, J.Teixeira, SANS, Physica B 136, 103 (1986)

    Google Scholar 

  55. E.Raspaud, D.Lairez, M.Adam, J.P.Carton, Macromolecules 29, 1269 (1996)

    Article  ADS  Google Scholar 

  56. A.Pautrat, A.Brûlet, C.Simon, P.Mathieu, Phys. Rev. Lett. (2012) (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chaboussant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaboussant, G., Désert, S. & Brûlet, A. Recent developments and projects in SANS instrumentation at LLB-Orphée. Eur. Phys. J. Spec. Top. 213, 313–325 (2012). https://doi.org/10.1140/epjst/e2012-01679-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01679-x

Keywords

Navigation