Skip to main content

Advertisement

Log in

Atmospheric teleconnections and flow regimes under future climate projections

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the low-frequency variability of the midtropospheric atmospheric flow of the Northern Hemisphere during winter in terms of teleconnection patterns and atmospheric flow regimes. Teleconnection patterns have been determined by two different methods, correlation analysis and empirical orthogonal function analysis. Flow regimes have been determined by analysing the structure of a spherical probability density function in a low-dimensional state space spanned by the three leading empirical orthogonal functions. To assess the ability of state-of-the-art coupled atmosphere-ocean general circulation models (AOGCMs), multi-model simulations for present day conditions, performed for the 4th assessment report of the Intergovernmental Panel on Climate Change have been analysed. The comparison with observations reveals, that state-of-the-art AOGCMs are able to describe the low-frequency variability in terms of teleconnections and flow regimes realistically. The analyses of simulations for future climate scenarios reveal changes in the strengths of the centers of action. Concerning climate regimes, two new regimes appear and additionally, slight changes were found in the structure of some regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.M. Wallace, D.S. Gutzler, Mon. Wea. Rev. 109, 784 (1981)

    Google Scholar 

  • G.T. Walker, E.W. Bliss, Mem. R. Meteor. Soc. 4, 53 (1932)

    Google Scholar 

  • A.G. Barnston, R.E. Livezey, Mon. Wea. Rev. 115, 1083 (1987)

    Google Scholar 

  • T. Woolings, B. Hoskins, M. Blackburn, P. Berrisford, J. Atmos. Sci. 65, 609 (2008)

    Google Scholar 

  • J.W. Hurrell, Geophys. Res. Lett. 23, 665 (1996)

    Google Scholar 

  • J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck (Geophys. Monogr. 134, Washington, D.C., 2003), p. 279

  • R. Glowienka-Hense, Tellus A 42, 497 (1990)

    Google Scholar 

  • R. Huth, J. Clim. 10, 1545 (1997)

    Google Scholar 

  • A.C. Renshaw, D.P. Rowell, C.K. Folland, J. Clim. 11, 1073 (1998)

    Google Scholar 

  • D.B. Stephenson, V. Pavan, Clim. Dyn. 20, 381 (2003)

    Google Scholar 

  • S.I. Kuzima, L. Bengtsson, O.M. Johannessen, H. Drange, L.P. Bobylev, M.W. Miles, Geophys. Res. Lett. 32, L04703 (2005)

  • D.B. Stephenson, V. Pavan, M. Collins, M.M. Junge, R. Quadrelli and Participating CMIP2 Modelling Groups, Clim. Dyn. 27, 401 (2006)

    Google Scholar 

  • C.G. Rossby, J. Mar. Res. 2, 38 (1939)

    Google Scholar 

  • S. Corti, F. Molteni, T.N. Palmer, Nature 389, 799 (1999)

    Google Scholar 

  • D.B. Stephenson, A. Hannachi, A. O’Neill, Quart. J. Roy. Meteor. Soc. 130, 583 (2004)

    Google Scholar 

  • J.G. Charney, J.G.A. DeVore, J. Atmos. Sci. 36, 1205 (1979)

    Google Scholar 

  • B. Legras, M. Ghil, J. Atmos. Sci. 42, 433 (1985)

    Google Scholar 

  • D. Crommelin, J. Atmos. Sci. 60, 229 (2003)

    Google Scholar 

  • B.B. Reinhold, R.T. Pierrehumbert, Mon. Wea. Rev. 110, 1105 (1982)

    Google Scholar 

  • U. Achatz, J.D. Opsteegh, J. Atmos. Sci. 60, 478 (2003)

    Google Scholar 

  • M. Sempf, K. Dethloff, D. Handorf, M.V. Kurgansky, J. Atmos. Sci. 64, 2029 (2007)

    Google Scholar 

  • H. Itoh, M. Kimoto, J. Atmos. Sci. 53, 2217 (1996)

    Google Scholar 

  • H. Itoh, M. Kimoto, Physica D 109, 274 (1997)

    Google Scholar 

  • T.N. Palmer, Bull. Amer. Meteor. Soc. 74, 49 (1993)

    Google Scholar 

  • T.N. Palmer, J. Clim. 12, 575 (1993)

    Google Scholar 

  • D. Straus, F. Molteni, J. Clim. 17, 1641 (2004)

    Google Scholar 

  • M. Kageyama, F. D’Andrea, G. Ramstein, P.J. Valdes, R. Vautard, Clim. Dyn. 15, 2773 (1999)

    Google Scholar 

  • D. Handorf, K. Dethloff, A.G. Marshall, A. Lynch, J. Clim. 22, 58 (2009)

    Google Scholar 

  • G.A. Meehl, C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, R.J. Stouffer, K.E. Taylor, Bull. Amer. Meteor. Soc. 88, 1383 (2007)

    Google Scholar 

  • W.D. Collins, C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A. Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Henderson, J.T. Kiehl, W.G. Large, D.S. McKenna, B.D. Santer, R.D. Smith, J. Clim. 19, 2122 (2006)

    Google Scholar 

  • G.M. Flato, G.J. Boer, Geophys. Res. Lett. 28, 195 (2001)

    Google Scholar 

  • N.A. McFarlane, J.F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, J. Li, The CCCma third generation atmospheric general circulation model (CCCma Internal Rep., Victoria, 2005), p. 25

  • J.F. Scinocca, N.A. McFarlane, M. Lazare, J. Li, D. Plummer, Atmos. Chem. Phys. 8, 7883 (2008)

    Google Scholar 

  • E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, The atmospheric general circulation model ECHAM 5. PART I: model description (Max-Plank Institute Meteorol., Rep 349, Hamburg, 2003), p. 127

  • J.H. Jungclaus, M. Botzet, H. Haak, N. Keenlyside, J.J. Luo, M. Latif, J. Marotzke, U. Mikolajewicz, E. Roeckner, J. Clim. 19, 3952 (2005)

    Google Scholar 

  • V. Pope, M.L. Gallani, P.R. Rowntree, R.A. Stratton, Clim. Dyn. 16, 123 (2000)

    Google Scholar 

  • C. Gordon, C. Cooper, C.A. Senior, H.T. Banks, J.M. Gregory, T.C. Johns, J.F.B. Mitchell, R.A. Wood, Clim. Dyn. 16, 147 (2000)

    Google Scholar 

  • E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, Bull. Amer. Meteor. Soc. 77, 437 (1996)

    Google Scholar 

  • R. Preisendorfer, Principal Component Analysis in Meteorology and Oceanography (Developments in Atmos. Sci., Vol. 17, Elsevier, Amsterdam, 1988), p. 425

  • H. von Storch, F.W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, Cambridge, UK, 1999), p. 484

  • M.B. Richman, J. Climatol. 6, 293 (1986)

    Google Scholar 

  • R. Huth, Tellus A 58, 121 (2006)

  • T.P. Barnett, J. Clim. 12, 511 (1999)

    Google Scholar 

  • M. Kimoto, M. Ghil, J. Atmos. Sci. 50, 2625 (1993)

    Google Scholar 

  • C.J. Hsu, F. Zwiers, J. Geophys. Res. 106, 20145 (2001)

    Google Scholar 

  • X. Cheng, J.M. Wallace, J. Atmos. Sci. 50, 2674 (1993)

    Google Scholar 

  • K.C. Mo, M. Ghil, J. Geophys. Res. 93, 10927 (1988)

    Google Scholar 

  • P. Smyth, K. Ide, M. Ghil, J. Atmos. Sci. 56, 3704 (1999)

    Google Scholar 

  • A.H. Monahan, L. Pandolfo, J.C. Fyfe, Geophys. Res. Lett. 28, 1019 (2001)

    Google Scholar 

  • B. Christiansen, J. Clim. 20, 2229 (2007)

    Google Scholar 

  • B. Christiansen, J. Clim. 18, 4814 (2005)

    Google Scholar 

  • A.H. Monahan, J.C. Fyfe, J. Clim. 20, 375 (2007)

    Google Scholar 

  • D. Crommelin, J. Atmos. Sci. 61, 2384 (2004)

    Google Scholar 

  • B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall, New York, USA, 1986), p. 176

  • T. Schneider, A. Neumaier, ACM Transact. Math. Software 1, 58 (2001)

  • K.E. Taylor, J. Geophys. Res. 106, 7183 (2001)

    Google Scholar 

  • D.W.T. Thompson, J.M. Wallace, Geophys. Res. Lett. 25, 1297 (1998)

    Google Scholar 

  • J.M. Wallace, Y. Zhang, L. Bajuk, J. Clim. 9, 249 (1996)

    Google Scholar 

  • S.P.E. Keeley, M. Collins, A.J. Thorpe, Clim. Dyn. 31, 195 (2008)

    Google Scholar 

  • A.H. Monahan, J.C. Fyfe, G.M. Flato, Geophys. Res. Lett. 27, 1139 (2000)

    Google Scholar 

  • Q. Teng, J.C. Fyfe, A.H. Monahan, Clim. Dyn. 28, 867 (2007)

    Google Scholar 

  • K. Dethloff, A. Rinke, E. Sokolova, S.K. Saha, D. Handorf, W. Dorn, A. Benkel, B. Rockel, H. von Storch, M. Køltzow, J.E. Haugen, L.P. Røed, E. Roeckner, J.H. Christensen, M. Stendel, Geophys. Res. Lett. 33, L03703 (2006)

  • R. Joseph, M. Ting, P.J. Kushner, J. Clim. 17, 540 (2004)

    Google Scholar 

  • W.A. Müller, E. Roeckner, Geophys. Res. Lett. 33, L05711 (2006)

  • H. Lin, J. Derome, R.J. Greatbatch, K.A. Peterson, J. Lu, Geophys. Res. Lett. 29, 1943 (2002)

    Google Scholar 

  • M.P. Hoerling, A. Kumar, J. Clim. 15, 2184 (2002)

    Google Scholar 

  • S. Brand, K. Dethloff, D. Handorf, Geophys. Res. Lett. 35, L05809 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Handorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handorf, D., Dethloff, K. Atmospheric teleconnections and flow regimes under future climate projections. Eur. Phys. J. Spec. Top. 174, 237–255 (2009). https://doi.org/10.1140/epjst/e2009-01104-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01104-9

Keywords

Navigation