Skip to main content
Log in

A cosmological dust model with extended f(χ) gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Introducing a fundamental constant of nature with dimensions of acceleration into the theory of gravity makes it possible to extend gravity in a very consistent manner. At the non-relativistic level a MOND-like theory with a modification in the force sector is obtained, which is the limit of a very general metric relativistic theory of gravity. Since the mass and length scales involved in the dynamics of the whole universe require small accelerations of the order of Milgrom’s acceleration constant a 0, it turns out that the relativistic theory of gravity can be used to explain the expansion of the universe. In this work it is explained how to use that relativistic theory of gravity in such a way that the overall large-scale dynamics of the universe can be treated in a pure metric approach without the need to introduce dark matter and/or dark energy components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J.D. Bekenstein, Phys. Rev. D 70, 083509 (2004). arXiv:astro-ph/0403694

    Article  ADS  Google Scholar 

  2. T. Bernal, S. Capozziello, G. Cristofano, M. de Laurentis, Mod. Phys. Lett. A 26, 2677 (2011). arXiv:1110.2580 [gr-qc]

    Article  ADS  Google Scholar 

  3. T. Bernal, S. Capozziello, J.C. Hidalgo, S. Mendoza, Eur. Phys. J. C 71, 1794 (2011). arXiv:1108.5588 [astro-ph.CO]

    Article  ADS  Google Scholar 

  4. L. Blanchet, S. Marsat, arXiv:1205.0400 [gr-qc] (2012)

  5. S. Capozziello, M. de Laurentis, V. Faraoni, Open Astron. J. 3, 49 (2010). arXiv:0909.4672 [gr-qc]

    Article  ADS  Google Scholar 

  6. S. Capozziello, L.Z. Fang, Int. J. Mod. Phys. D 11, 483 (2002). arXiv:gr-qc/0201033

    Article  ADS  MATH  Google Scholar 

  7. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics. Fundamental Theories of Physics (Springer, Berlin, 2010)

    Google Scholar 

  8. M. Dalarsson, N. Dalarsson, Tensor Calculus, Relativity, and Cosmology: A First Course (Elsevier, Amsterdam, 2005)

    Google Scholar 

  9. B. Famaey, S. McGaugh, arXiv:1112.3960 [astro-ph.CO] (2011)

  10. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011). arXiv:1104.2669 [gr-qc]

    Article  ADS  Google Scholar 

  11. X. Hernandez, M.A. Jiménez, C. Allen, Eur. Phys. J. C 72, 1884 (2012). arXiv:1105.1873 [astro-ph.GA]

    Article  ADS  Google Scholar 

  12. X. Hernandez, S. Mendoza, T. Suarez, T. Bernal, Astron. Astrophys. 514, A101 (2010). arXiv:0904.1434

    Article  ADS  Google Scholar 

  13. L. Landau, E. Lifshitz, The Classical Theory of Fields. Course of Theoretical Physics (Butterworth Heinemann, Stoneham, 1975)

    Google Scholar 

  14. M. Longair, J. Phys. Conf. Ser. 314, 012011 (2011)

    Article  ADS  Google Scholar 

  15. M.S. Longair, Galaxy Formation (Springer, Berlin, 2008). ISBN 978-3-540-73477-2

    Google Scholar 

  16. S. Mendoza, X. Hernandez, J.C. Hidalgo, T. Bernal, Mon. Not. R. Astron. Soc. 411, 226 (2011). arXiv:1006.5037 [astro-ph.GA]

    Article  ADS  Google Scholar 

  17. S. Mendoza, Y.M. Rosas-Guevara, Astron. Astrophys. 472, 367 (2007). arXiv:astro-ph/0610390

    Article  ADS  MATH  Google Scholar 

  18. P. Mishra, T.P. Singh, arXiv:1206.3322 [astro-ph.GA] (2012)

  19. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  20. A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, A.V. Filippenko, S. Jha, W. Li, R. Chornock, R.P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C.C. Steidel, T. Benítez, Z. Tsvetanov, Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  21. Y. Sobouti, Astron. Astrophys. 464, 921 (2007). arXiv:astro-ph/0603302

    Article  ADS  MATH  Google Scholar 

  22. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by two DGAPA-UNAM grants (PAPIIT IN116210-3 and IN111513-3). DAC, SM and LAT thank support granted by CONACyT: 48014, 26344 and 221045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mendoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carranza, D.A., Mendoza, S. & Torres, L.A. A cosmological dust model with extended f(χ) gravity. Eur. Phys. J. C 73, 2282 (2013). https://doi.org/10.1140/epjc/s10052-013-2282-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2282-4

Keywords

Navigation