Skip to main content
Log in

The light-by-light contribution to the muon (g-2) from lightest pseudoscalar and scalar mesons within nonlocal chiral quark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons to the anomalous magnetic moment of muon is calculated in the framework of the nonlocal SU(3)×SU(3) quark model. The model is based on chirally symmetric four-quark interaction of the Nambu–Jona-Lasinio type and Kobayashi–Maskawa–’t Hooft U A (1) breaking six-quark interaction. Full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. The small positive contributions from the scalar mesons stabilize the total result with respect to change of model parameters and reduces to \(a_{\mu}^{\mathrm{LbL},\mathrm{PS}+\mathrm{S}}=(6.25\pm0.83)\cdot10^{-10}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We consider the isospin limit m c,u =m c,d m c,s .

  2. Through the paper capital letters will be used for Euclidean momenta, small letters for Minkowski momenta.

  3. Such a description of the light scalar mesons as \(\bar {q}q\)-states is probably simplified. It seems that it is necessary to include other structures, e.g., four-quark states (see, e.g., [28]). However, the present model is formulated in the leading order of the 1/N c expansion and our calculations are consistent within given approximation. Moreover, the scalar mesons participate in the processes under consideration only as intermediate states, being far from mass-shell.

  4. For the pion exchange contribution, the coefficient of the leading, log2(M ρ /m μ ), term in (m μ /M ρ )2 expansion was found in [35].

  5. Namely, varying the mass parameter values for the ρ-meson, muon and difference between the pion and muon masses squared, one can extract different terms of the expansions given in [33].

  6. Similar consideration was used in [25] for the investigation of 1/N c corrections.

  7. We rescale current quark masses in order to reproduce mass of neutral pion instead of charged one.

  8. \(m^{\mathrm{NJL}}_{c,u}=5.69\mbox{~MeV}\), \(m^{\mathrm{NJL}}_{d,u}=253.9\mbox{~MeV}\), \(\varLambda^{\mathrm {NJL}}_{q}=800\mbox{~MeV}\).

  9. \(m^{\mathrm{N}\chi \mathrm{QM}}_{c,u}=5.45\mbox{~MeV}\), \(m^{\mathrm{ N}\chi \mathrm{QM}}_{d,u}=255.8\mbox{~MeV}\), Λ NχQM=902.4 MeV.

  10. In the case of pseudoscalar mesons, the diagrams in Figs. 6d–g give a zero contribution due to chirality considerations

  11. \(B_{i} ( p^{2};q_{1}^{2} ,q_{2}^{2} )\) is divergent in this kinematic.

References

  1. G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006)

    ADS  Google Scholar 

  2. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009)

    Article  ADS  Google Scholar 

  3. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011)

    Article  ADS  Google Scholar 

  4. F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011)

    Article  ADS  Google Scholar 

  5. E. de Rafael, Phys. Lett. B 322, 239 (1994)

    ADS  Google Scholar 

  6. M. Hayakawa, T. Kinoshita, A. Sanda, Phys. Rev. Lett. 75, 790 (1995)

    Article  ADS  Google Scholar 

  7. J. Bijnens, E. Pallante, J. Prades, Phys. Rev. Lett. 75, 1447 (1995)

    Article  ADS  Google Scholar 

  8. M. Hayakawa, T. Kinoshita, Phys. Rev. D 57, 465 (1998)

    ADS  Google Scholar 

  9. A.A. Pivovarov, Phys. At. Nucl. 66, 902 (2003). Yad. Fiz. 66, 934 (2003)

    Article  Google Scholar 

  10. M. Knecht, A. Nyffeler, Phys. Rev. D 65, 073034 (2002)

    ADS  Google Scholar 

  11. K. Melnikov, A. Vainshtein, Phys. Rev. D 70, 113006 (2004)

    ADS  Google Scholar 

  12. A. Nyffeler, Phys. Rev. D 79, 073012 (2009)

    ADS  Google Scholar 

  13. L. Cappiello, O. Cata, G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011)

    ADS  Google Scholar 

  14. J. Bijnens, E. Pallante, J. Prades, Nucl. Phys. B 474, 379 (1996)

    Article  ADS  Google Scholar 

  15. E. Bartos, A.Z. Dubnickova, S. Dubnicka, E.A. Kuraev, E. Zemlyanaya, Nucl. Phys. B 632, 330 (2002)

    Article  ADS  Google Scholar 

  16. A.E. Dorokhov, W. Broniowski, Phys. Rev. D 78, 073011 (2008)

    ADS  Google Scholar 

  17. A. Dorokhov, A. Radzhabov, A. Zhevlakov, Eur. Phys. J. C 71, 1702 (2011)

    Article  ADS  Google Scholar 

  18. C.S. Fischer, T. Goecke, R. Williams, Eur. Phys. J. A 47, 28 (2011)

    Article  ADS  Google Scholar 

  19. T. Goecke, C.S. Fischer, R. Williams, Phys. Rev. D 83, 094006 (2011)

    ADS  Google Scholar 

  20. D.K. Hong, D. Kim, Phys. Lett. B 680, 480 (2009)

    ADS  Google Scholar 

  21. I.V. Anikin, A.E. Dorokhov, L. Tomio, Phys. Part. Nucl. 31, 509 (2000). Fiz. Elem. Chast. Atom. Yadra 31, 1023 (2000)

    Google Scholar 

  22. A.E. Dorokhov, W. Broniowski, Eur. Phys. J. C 32, 79 (2003)

    Article  ADS  Google Scholar 

  23. A.E. Radzhabov, M.K. Volkov, Eur. Phys. J. A 19, 139 (2004)

    Article  ADS  Google Scholar 

  24. A.E. Radzhabov, M.K. Volkov, Phys. Part. Nucl. Lett. 1, 1 (2004)

    Google Scholar 

  25. A.E. Radzhabov, D. Blaschke, M. Buballa, M.K. Volkov, Phys. Rev. D 83, 116004 (2011)

    ADS  Google Scholar 

  26. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 44, 1422 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976). Erratum-ibid. D 18, 2199 (1978)

    ADS  Google Scholar 

  28. N.N. Achasov, A.V. Kiselev, Phys. Rev. D 83, 054008 (2011)

    ADS  Google Scholar 

  29. J. Terning, Phys. Rev. D 44, 887 (1991)

    ADS  Google Scholar 

  30. A. Scarpettini, D. Gomez Dumm, N.N. Scoccola, Phys. Rev. D 69, 114018 (2004)

    ADS  Google Scholar 

  31. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  32. S.J. Brodsky, E. de Rafael, Phys. Rev. 168, 1620 (1968)

    Article  ADS  Google Scholar 

  33. I.R. Blokland, A. Czarnecki, K. Melnikov, Phys. Rev. Lett. 88, 071803 (2002)

    Article  ADS  Google Scholar 

  34. M. Oertel, M. Buballa, J. Wambach, Phys. Lett. B 477, 77 (2000)

    ADS  Google Scholar 

  35. M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael, Phys. Rev. Lett. 88, 071802 (2002)

    Article  ADS  Google Scholar 

  36. M. Oertel, M. Buballa, J. Wambach, Phys. At. Nucl. 64, 698 (2001)

    Article  Google Scholar 

  37. D. Blaschke, M. Buballa, A.E. Radzhabov, M.K. Volkov, Phys. At. Nucl. 71, 1981 (2008)

    Article  Google Scholar 

  38. J. Prades, E. de Rafael, A. Vainshtein, Lepton Dipole Moments. Advanced Series on Directions in High Energy Physics, vol. 20 (World Scientific, Singapore, 2009), p. 303. arXiv:0901.0306 [hep-ph]

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Buballa, Yu.M. Bystritskiy, C. Fischer, N.I. Kochelev, E.A. Kuraev, V.P. Lomov, B.-J. Schaefer, and R. Williams for critical remarks and illuminating discussions. A.E.D. and A.E.R. are grateful for the hospitality during visits at the TU Darmstadt.

This work is supported in part by the Heisenberg–Landau program (JINR), the Russian Foundation for Basic Research (projects No. 10-02-00368 and No. 11-02-00112), the Federal Target Program Research and Training Specialists in Innovative Russia 2009–2013 (16. 740.11.0154, 14.B37.21.0910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Radzhabov.

Appendices

Appendix A: Four-quark coupling constants, polarization operators and mixing angles

The elements of G ch -matrices take the form

$$ \begin{aligned} &G_{00} = G \pm\frac{H}{3} (2S_u + S_s ), \\ &G_{88} = G \mp \frac{H}{6} (4S_u - S_s ), \\ &G_{08} = G _{80}= \mp\frac{\sqrt{2}}{6}H(S_u -S_s ) , \qquad G_{33}=G \mp\frac{H}{2} S_s,\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \end{aligned} $$
(A.1)

where the upper sign corresponds to the scalar channel, while the lower sign corresponds to the pseudoscalar channel. For the pion, G π equals G 33 of the pseudoscalar interaction, and, for the a 0-meson, \(G_{a_{0}}\) equals G 33 of the scalar interaction.

The elements of \(\mathrm{\varPi}_{\mathit{ch}}(P^{2})\)-matrix for the scalar and pseudoscalar mesons are diagonal in the quark-flavor basis, and in the singlet-triplet-octet basis they are given by

$$ \begin{aligned} &\varPi_{00}\bigl(P^{2}\bigr) = \frac{1}{3}\bigl(2 \varPi_{uu}\bigl(P^{2}\bigr) +\varPi_{ss} \bigl(P^{2}\bigr) \bigr), \\ &\varPi_{88}\bigl(P^{2}\bigr) = \frac{1}{3}\bigl( \varPi_{uu}\bigl(P^{2}\bigr) +2\varPi_{ss} \bigl(P^{2}\bigr) \bigr), \\ &\varPi_{08}\bigl(P^{2}\bigr) = \varPi_{80} \bigl(P^{2}\bigr) =\frac{\sqrt{2}}{3}\bigl(\varPi_{uu} \bigl(P^{2}\bigr) -\varPi_{ss}\bigl(P^{2}\bigr) \bigr), \\ &\varPi_{33}\bigl(P^{2}\bigr)=\varPi_{uu} \bigl(P^{2}\bigr), \end{aligned} $$
(A.2)

where the difference between the scalar and pseudoscalar channels is in the polarization operators

(A.3)

where K ±=K±P/2. Similarly to Eq. (A.1), the upper sign corresponds to the scalar channel and the lower sign corresponds to the pseudoscalar channel, \(\varPi_{a_{0}}\) equals Π 33 for the scalar channel and Π π equals Π 33 for the pseudoscalar channel. The unrenormalized mesonic propagators for the scalar mesons are

$$ \begin{aligned} &D_{a_0}^{-1}\bigl(P^{2}\bigr)=-G_{a_0}^{-1}+ \varPi_{a_0}\bigl(P^{2}\bigr), \\ &D_{\sigma,f_0}^{-1}\bigl(P^{2}\bigr)=\frac{1}{2} \bigl[ (A+C) \pm\sqrt{(A-C)^{2}+4B^{2}} \bigr] , \\ &A=-G_{88}/\det(\mathbf{G}_{\mathit{ch}})+ \varPi_{00}\bigl(P^{2}\bigr), \\ &B=+G_{08} /\det(\mathbf{G}_{\mathit{ch}})+ \varPi_{08}\bigl(P^{2}\bigr), \\ &C=-G_{00}/\det(\mathbf{G}_{\mathit{ch}})+ \varPi_{88}\bigl(P^{2}\bigr), \\ &\det(\mathbf{G}_{\mathit{ch}})=G_{00}G_{88}-G_{08}^{2}. \end{aligned} $$
(A.4)

The mixing angle depends on the meson virtuality

(A.5)

Expressions for the unrenormalized propagators for the pseudoscalar mesons are similar to the scalar meson propagators, Eqs. (A.4), (A.5), with replacements a 0π, ση, f 0η′ and θ S θ P .

Appendix B: Feynman rules for nonlocal vertices

The total vertex of photon interaction with quark–antiquark pair (Fig. 4a) contains local and nonlocal parts

(B.1)

where T aQ and m(1)(p 1,p 2) is the first order finite-difference of the dynamical quark mass

(B.2)
Fig. 4
figure 4

Vertices \(\mathrm{\varGamma}^{\mu}_{p_{2},p_{1}}\), Eq. (B.1), \(\mathrm{\varGamma}^{M;\mu}_{p_{2},p_{1},q}\), Eq. (B.3), with one photon

The contact interaction vertex of meson, photon and quark–antiquark pair (Fig. 4b) is purely nonlocal and takes the form

(B.3)

In order to express the vertices with two external photons we introduce the following functions:

$$ \begin{aligned} &G_{\mu}^{a} (k,q ) =iT^{a} ( 2k+q )_{\mu}\mathrm{f}^{(1)}(k,k+q), \\ &G_{\mu\nu}^{ab} \bigl( k,q,q^{\prime},k^{\prime} \bigr) = -f \bigl( k^{\prime} \bigr) \bigl\{ T^{a}T^{b} \bigl[ g_{\mu\nu}\mathrm{f}^{(1)}\bigl(k,k+q+q^{\prime} \bigr)\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\hphantom{G_{\mu\nu}^{ab} \bigl( k,q,q^{\prime},k^{\prime} \bigr) =} {}+ \bigl[ 2 \bigl( k+q^{\prime} \bigr) +q \bigr]_{\mu} \bigl( 2k+q^{\prime} \bigr)_{\nu} \\ &\hphantom{G_{\mu\nu}^{ab} \bigl( k,q,q^{\prime},k^{\prime} \bigr) =} {}\times \mathrm{f}^{(2)} \bigl( k,k+q^{\prime},k+q+q^{\prime} \bigr) \bigr] \\ &\hphantom{G_{\mu\nu}^{ab} \bigl( k,q,q^{\prime},k^{\prime} \bigr) =}{}+ \bigl[ ( q,a,\mu) \longleftrightarrow\bigl( q^{\prime },b,\nu \bigr) \bigr] \bigr\} , \end{aligned} $$
(B.4)

where f(2)(k 1,k 2,k 3) is the second order finite-difference

(B.5)

With this notation, the vertex of two-photon interaction with quark–antiquark pair (Fig. 5a) is

(B.6)

and the interaction vertex for two photons, meson and quark–antiquark pair (Fig. 5b) becomes

(B.7)
Fig. 5
figure 5

Vertices \(\mathrm{\varGamma}^{\mu,\nu}_{p_{2},p_{1},q_{1},q_{2}}\), Eq. (B.6), and \(\mathrm{\varGamma}^{M;\mu,\nu }_{p_{2},p_{1},q_{1},q_{2}}\), Eq. (B.7), with two photons

Appendix C: Amplitude with meson and two photons

The photon–meson transition amplitude is a sum of diagrams shown in Fig. 6, where all particles are virtual. For the scalar meson it takes the form

$$ \begin{aligned} &A \bigl(\gamma_{1}^{\ast}\gamma_{2}^{\ast} \rightarrow M^{\ast} \bigr) =e^{2}\epsilon_{1}^{\mu} \epsilon_{2}^{\nu}\varDelta^{\mu\nu} ( p, q_{1}, q_{2} ), \\ &\varDelta^{\mu\nu} ( p, q_{1}, q_{2} ) \\ &\quad = -i N_{c} \int\frac{d^{4}k}{(2\pi)^{4}} \\ &\qquad{}\times\mathrm{Tr} \bigl(2 \mathrm{\varGamma}^{M}_{k_2,k_1}S(k_1) \mathrm{\varGamma}^\mu_{k_1,k_3}S(k_3)\mathrm{ \varGamma}^\nu_{k_3,k_2}S(k_2) \\ &\qquad{}+ \mathrm{\varGamma}^{M;\mu}_{k_2,k_3,q_1}S(k_3) \mathrm{\varGamma}^\nu_{k_3,k_2}S(k_2) \\ &\qquad {}+ \mathrm{ \varGamma}^{M;\nu}_{k_3,k_1,q_2}S(k_1)\mathrm{ \varGamma}^\mu_{k_1,k_3}S(k_3) \\ &\qquad{}+ \mathrm{\varGamma}^{M}_{k_2,k_1}S(k_1) \mathrm{\varGamma}^{\mu,\nu}_{k_1,k_2,q_1,q_2} + \mathrm{\varGamma }^{M;\mu,\nu}_{k_3,k_3,q_1,q_2}S(k_3)\bigr), \end{aligned} $$
(C.1)

where the symbols are the photon momenta q 1,2, the photon polarization vectors ϵ 1,2, the meson momentum p=q 1+q 2, and the quark momenta k 1,2,3 (k 1=k+q 1, k 2=kq 2, k 3=k). The first term in parentheses corresponds to the quark triangle diagramsFootnote 10 (Fig. 6b and crossed term Fig. 6c) and next terms corresponds to the diagrams in Figs. 6d–g with effective nonlocal vertices defined in (B.3), (B.6), (B.7).

Fig. 6
figure 6

The diagrams for the photon–meson transition

For different scalar meson states one has the following combinations of nonstrange and strange components:

(C.2)

One can easily see from Eqs. (17), (18) that the mixing for the form factors A S , B S , \(\mathrm{B}^{\prime}_{S}\) from the components A u , B u , \(B^{\prime}_{u}\) and A s , B s , \(B^{\prime}_{s}\) is similar. One should project A i and B i (i=u,s) from loops of nonstrange and strange quarks

$$ \begin{aligned} &A_i \bigl( p^{2};q_{1}^{2} ,q_{2}^{2} \bigr) \\ &\quad =\frac{\delta_i^{\mu\nu} ( p^{2}, q_{1}^{2}, q_{2}^{2} ) }{2(q_1\cdot q_2)} \biggl[ g^{\mu\nu}-\frac{(q_1\cdot q_2)\;q_1^\nu q_2^\mu}{(q_1\cdot q_2)^2-q_1^2 q_2^2} \biggr], \\ &B_i \bigl( p^{2};q_{1}^{2} ,q_{2}^{2} \bigr)=-\frac{\delta_i^{\mu\nu} ( p^{2}, q_{1}^{2}, q_{2}^{2} ) }{2(q_1\cdot q_2) ((q_1\cdot q_2)^2-q_1^2 q_2^2 )} \\ &\hphantom{B_i \bigl( p^{2};q_{1}^{2} ,q_{2}^{2} \bigr)=} {}\times\biggl[ g^{\mu\nu}-3\frac{(q_1\cdot q_2)\;q_1^\nu q_2^\mu }{(q_1\cdot q_2)^2-q_1^2 q_2^2} \biggr], \end{aligned} $$
(C.3)

where

$$ \delta_i^{\mu\nu} ( p^{2}, q_{1}^{2}, q_{2}^{2} ) =- 2i \int\frac{d^{4}k}{(2\pi)^{4}} \bigl[J^{\mu\nu}_{bc}+J^{\mu \nu}_{de}+J^{\mu\nu}_f+J^{\mu\nu}_g \bigr], $$

and different terms in brackets, J μν, correspond to the diagrams shown in Figs. 6, with lower indices being the symbol of the figure.

Below for simplicity, a momentum is denoted as a lower index and a quark-flavor index i is omitted:

Then, one has

(C.4)

where

and

$$ \begin{aligned} J^{\mu\nu}_\mathrm{de}&=\frac{f_2}{D_2D_3}\mathrm {f}^{(1)}_{13}(k_1+k_3)^{\mu} \\[2pt] &\quad{}\times\bigl(m_2k_3^{\nu} + m_3k_2^{\nu} -\mathrm{m}^{(1)}_{32}(k_2+k_3)^{\nu} \\[2pt] &\quad {}\times \bigl((k_3k_2)+m_3m_2\bigr) \bigr) +\frac{f_1}{D_1D_3}\mathrm{f}^{(1)}_{23}(k_2+k_3)^{\nu} \\[2pt] &\quad{}\times\bigl(m_3k_1^{\mu} +m_1k_3^{\mu}-\mathrm{m}^{(1)}_{13}(k_1+k_3)^{\mu} \\[2pt] &\quad {}\times \bigl((k_3k_1)+m_3m_1 \bigr) \bigr), \\[2pt] J^{\mu\nu}_\mathrm{f}&=\frac{f_1f_2}{D_1D_2}\bigl((k_1k_2)+m_1m_2 \bigr)m_d \bigl[(f_1+f_2) g^{\mu\nu} \mathrm{f}^{(1)}_{12} \\[2pt] &\quad {}+(k_1+k_3)^{\mu}(k_2+k_3)^{\nu} \bigl((f_1+f_2) \\[2pt] &\quad {}\times\bigl(\mathrm{f}^{(2)}_{231}+ \mathrm{f}^{(2)}_{132}\bigr) -\mathrm{f}^{(1)}_{13} \mathrm{f}^{(1)}_{23} \bigr) \bigr], \\[2pt] J^{\mu\nu}_\mathrm{g}&= -\frac{f_2m_2}{D_2} \bigl[g^{\mu\nu} \mathrm{f}^{(1)}_{12}+(k_1+k_3)^{\mu}(k_2+k_3)^{\nu} \mathrm{f}^{(2)}_{231}\bigr] \\[2pt] &\quad{}-\frac{f_1m_1}{D_1} \bigl[g^{\mu\nu}\mathrm {f}^{(1)}_{12}+(k_2+k_3)^{\nu}(k_1+k_3)^{\mu} \mathrm{f}^{(2)}_{132}\bigr] \\[2pt] &\quad{}+\frac{f_3m_3}{D_3} \mathrm{f}^{(1)}_{13} \mathrm{f}^{(1)}_{23}(2k_1+k_3)^{\mu}(2k_2+k_3)^{\nu}. \end{aligned} $$
(C.5)

Analytical expressions for the form factors \(A_{i} ( p^{2};q_{1}^{2} ,q_{2}^{2} )\) and \(B_{i}^{\prime}( p^{2};q_{1}^{2} ,q_{2}^{2} )\) in the case of special kinematics,Footnote 11 when one photon is real, \(q_{1}^{2}=0\), and the virtuality of second photon is equal to the virtuality of meson \(p_{2}^{2}=q_{2}^{2}\), can be obtained by expanding the quark-loop expressions, Eqs. (C.3), (C.4), (C.5), in \(q_{1}^{2}\). The resulting expressions contain derivatives of the nonlocal function f(k 2) up to third order. These expressions are rather cumbersome and not presented here. Alternatively, one can calculate the form factors for small but nonzero \(q_{1}^{2}\) and then take the limit numerically.

Appendix D: Local limit of γ γ S amplitude

In the local model with constituent quark masses m i , the triangle quark-loop diagrams, depicted in Figs. 6b–c, reduce to the following expression:

(D.1)

where \(I_{\mathrm{g}}(m_{i}^{2})\) is a gauge non-invariant term (constant)

$$ \begin{aligned} &I_{\mathrm{g}}\bigl(m_i^2\bigr) = \frac{1}{2 \pi^2 } \int^{1}_{0}dx_1 \int^{1-x_1}_{0} dx_2 \frac{m_i^2-X}{m_i^2-X}=\frac{1}{4 \pi^2 } , \\[2pt] & X = x_1 (1-x_1-x_2) q_2^2+x_2 (1-x_1-x_2) q_1^2+x_1 x_2 p^2,\!\!\!\!\!\!\!\!\!\!\!\! \end{aligned} $$
(D.2)

which should be eliminated by suitable regularization, e.g., the Pauli–Villars regularization \(I_{\mathrm{g}}(m_{i}^{2})-I_{\mathrm {g}}(\varLambda_{\mathrm{PV}}^{2})=0\), and the form factors read

$$ \begin{aligned} &A_{\mathrm{loc};i} \bigl( p^{2};q_{1}^{2} ,q_{2}^{2} \bigr) \\[2pt] &\quad =\frac{m_i}{4 (q_1 q_2)\pi^2 } \int^{1}_{0}dx_1\int ^{1-x_1}_{0} dx_2 \\[2pt] &\qquad{}\times\frac{4X-p^2 +q_2^2 (1 -2x_1)+q_1^2 (1 -2x_2)}{m_i^2-X}, \\[2pt] &B_{\mathrm{loc};i} \bigl( p^{2};q_{1}^{2} ,q_{2}^{2} \bigr) \\[2pt] &\quad =\frac{m_i}{(q_1 q_2)\pi^2 } \int^{1}_{0}dx_1\int^{1-x_1}_{0} dx_2 \frac{ x_2 (1 -2 x_2)}{q_2^2(m_i^2-X)}. \end{aligned} $$
(D.3)

Note that, if one takes the local limit of the nonlocal expression Eq. (C.3) by setting Λ→∞, the contribution of nonlocal diagrams completely cancel a gauge non-invariant term.

For special kinematics considered above, the form factors become \((\bar {x} = 1-x)\)

$$ \begin{aligned} &A_{\mathrm{loc};i} \bigl( p^{2}; p^{2} ,0 \bigr) \\[2pt] &\quad =- \frac{m_i}{12 \pi^2 } \int^{1}_{0}dx \frac{2 m_i^2 - p^2 \bar{x} x (1+4x\bar{x} )}{(m_i^2-x\bar {x}p^2)^2} , \\[2pt] &B^\prime_{\mathrm{loc};i} \bigl( p^{2}; p^{2} ,0 \bigr)= -\frac{m_i}{6 \pi^2 }\int^{1}_{0}dx \frac{1-6x \bar{x}}{m_i^2-p^2x\bar{x}} . \end{aligned} $$
(D.4)

Appendix E: Tensor structures for LbL amplitude

Functions averaged over muon momenta can be represented as

(E.1)

where 〈A j are the averages of scalar products with muon momentum in the numerator and muon propagators in the denominator (\(\mathrm{D}_{1}= (P+Q_{1} )^{2}+m_{\mu}^{2}\), \(\mathrm{D}_{2}= (P-Q_{2} )^{2}+\nobreak m_{\mu}^{2}\))

$$ \begin{aligned} & \langle A \rangle_1= \biggl\langle\frac{1}{\mathrm{D}_{1}} \biggr \rangle=\frac{R_{1}-1}{2m_{\mu}^{2}},\qquad\langle A \rangle_2= \biggl\langle \frac{1}{\mathrm{D}_{2}} \biggr\rangle =\frac{R_{2}-1}{2m_{\mu}^{2}},\!\!\!\!\!\! \\ & \langle A \rangle_3 = \biggl\langle\frac{PQ_{2}}{\mathrm {D}_{1}} \biggr \rangle=(Q_{1}Q_{2})\frac{ ( 1-R_{1} )^{2}}{8m_{\mu}^{2}}, \\ & \langle A \rangle_4= \biggl\langle\frac{PQ_{1}}{\mathrm{D}_{2}} \biggr \rangle=-(Q_{1}Q_{2})\frac{ ( 1-R_{2} )^{2}}{8m_{\mu}^{2}}, \\ & \langle A \rangle_5= \biggl\langle\frac{1}{\mathrm{D}_{1} \mathrm{D}_{2}} \biggr \rangle=\frac{1}{M_{\mu}^{2}\vert Q_{1}\vert \vert Q_{2}\vert x}\arctan\biggl[ \frac{zx}{1-zt} \biggr] , \\ & \langle A \rangle_6= \langle1 \rangle=1, \end{aligned} $$
(E.2)

m μ is the muon mass \(( P^{2}=-m_{\mu}^{2} ) \) and

$$ \begin{aligned} & t=\frac{(Q_{1}Q_{2})}{\vert Q_{1}\vert \vert Q_{2}\vert }, \qquad x=\sqrt{1-t^{2}}, \\ & R_{i}=\sqrt{1+\frac{4m_{\mu}^{2}}{Q_{i}^{2}}}, \qquad z=\frac{Q_{1}Q_{2}}{4m_{\mu}^{2} } ( 1-R_{1} ) ( 1-R_{2} ). \end{aligned} $$
(E.3)

\(Z^{\mathrm{XY}}_{\mathbf{i},j}\) are polynomials in the photon momenta:

$$ \begin{aligned} &Z^{\mathrm{AA}}_{\mathbf{1},1}=(Q_1 Q_2) \bigl(Q_1^2+(Q_1 Q_2)\bigr) , \qquad \\ &Z^{\mathrm{AA}}_{\mathbf{1},2}=Q_2^2 \frac{3Q_1^2+Q_2^2+Q_3^2}{4} ,\qquad Z^{\mathrm{AA}}_{\mathbf{1},3}=-Q_1^2 ,\qquad \\ &Z^{\mathrm{AA}}_{\mathbf{1},4}=Q_2^2 ,\qquad Z^{\mathrm{AA}}_{\mathbf{1},6}=\frac{(Q_1 Q_2)-Q_2^2}{2} ,\qquad \\ &Z^{\mathrm{AA}}_{\mathbf{1},5}=Q_2^2 \bigl(2 m_{\mu}^{2}-Q_1^2-(Q_1 Q_2)\bigr) \bigl(Q_1^2+(Q_1 Q_2)\bigr), \end{aligned} $$
(E.4)
$$ \begin{aligned} &Z^{\mathrm{AA}}_{\mathbf{2},1}=\frac{Q_1^2(Q_1^2-2Q_3^2)}{2} ,\qquad Z^{\mathrm{AA}}_{\mathbf{2},2}= \frac{Q_2^2(Q_2^2-2Q_3^2)}{2} ,\!\!\!\!\!\!\!\!\!\!\!\! \\ &Z^{\mathrm{AA}}_{\mathbf{2},3}=-Q_1^2 ,\qquad Z^{\mathrm{AA}}_{\mathbf{2},4}= Q_2^2 , \\ &Z^{\mathrm{AA}}_{\mathbf{2},6}= Q_3^2- \frac{Q_1^2+Q_2^2}{2} , \\ &Z^{\mathrm{AA}}_{\mathbf{2},5}= Q_3^2 \bigl(Q_1^2 Q_2^2-2 m_{\mu}^{2} (Q_1 Q_2)\bigr) , \end{aligned} $$
(E.5)
$$ \begin{aligned} &Z^{\mathrm{AB}}_{\mathbf{1},1}=-Q_1^2 Q_2^2\bigl((Q_1 Q_2)+Q_1^2 \bigr) \frac{Q_3^2-Q_1^2}{2} , \\ &Z^{\mathrm{AB}}_{\mathbf{1},2}=-Q_2^2 \frac{(Q_1 Q_2)^2 (Q_2^2+(Q_1 Q_2))+Q_1^2 Q_2^2 Q_3^2}{2} , \\ &Z^{\mathrm{AB}}_{\mathbf{1},3}=-Q_1^2 (Q_1 Q_2) \bigl((Q_1 Q_2)+Q_2^2 \bigr) , \\ &Z^{\mathrm{AB}}_{\mathbf{1},4}= Q_2^2 (Q_1 Q_2) \bigl((Q_1 Q_2)+Q_2^2 \bigr) , \\ & Z^{\mathrm{AB}}_{\mathbf{1},5}= Q_1^2 Q_2^4 Q_3^2\frac{(Q_1 Q_2)+Q_1^2}{2} , \\ &Z^{\mathrm{AB}}_{\mathbf{1},6}= \bigl((Q_1 Q_2)^2+Q_1^2 Q_2^2\bigr)\frac{(Q_1 Q_2)+Q_2^2}{2} , \end{aligned} $$
(E.6)
$$ \begin{aligned} Z^{\mathrm{AB}}_{\mathbf{2},1}&=\frac{Q_1^2}{2} \bigl(Q_2^2 \bigl(Q_1^4 +(Q_1 Q_2) \bigl(Q_3^2-Q_1^2\bigr)\bigr) \\ &\quad{}+Q_1^2 \bigl((Q_1 Q_2) \bigl((Q_1 Q_2)+5 Q_2^2\bigr)+2 Q_2^4\bigr) \bigr) ,\quad \\ Z^{\mathrm{AB}}_{\mathbf{2},2}&=\frac{Q_2^2}{2} \bigl(Q_1^2 \bigl(Q_2^4 +(Q_1 Q_2) \bigl(Q_3^2-Q_2^2\bigr)\bigr) \\ &\quad{}+Q_2^2 \bigl((Q_1 Q_2) \bigl((Q_1 Q_2)+5 Q_1^2 \bigr)+2 Q_1^4\bigr) \bigr) , \\ Z^{\mathrm{AB}}_{\mathbf{2},3}&= Q_1^2 \bigl((Q_1 Q_2)+Q_1^2\bigr) \bigl((Q_1 Q_2)+Q_2^2\bigr) , \\ Z^{\mathrm{AB}}_{\mathbf{2},4}&=-Q_2^2 \bigl((Q_1 Q_2)+Q_1^2\bigr) \bigl((Q_1 Q_2)+Q_2^2\bigr) , \\ Z^{\mathrm{AB}}_{\mathbf{2},5}&=-Q_1^2 Q_2^2 Q_3^2 \frac{(Q_1 Q_2) (Q_2^2+Q_1^2)+2Q_1^2 Q_2^2}{2} , \\ Z^{\mathrm{AB}}_{\mathbf{2},6}&=\frac{(Q_1^2 Q_2^2-(Q_1 Q_2)^2) (Q_2^2+Q_1^2)}{2}-Q_1^2 Q_2^2 Q_3^2 . \end{aligned} $$
(E.7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorokhov, A.E., Radzhabov, A.E. & Zhevlakov, A.S. The light-by-light contribution to the muon (g-2) from lightest pseudoscalar and scalar mesons within nonlocal chiral quark model. Eur. Phys. J. C 72, 2227 (2012). https://doi.org/10.1140/epjc/s10052-012-2227-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2227-3

Keywords

Navigation