Skip to main content
Log in

The K 3 scalar form factors in the standard model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss the predictions of the standard model for the scalar form factors of K 3 decays. Our analysis is based on the results of chiral perturbation theory, large N c estimates of low-energy couplings and dispersive methods. It includes a discussion of isospin-violating effects of strong and electromagnetic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Yushchenko et al., Phys. Lett. B 581, 31 (2004)

    Article  ADS  Google Scholar 

  2. T. Alexopoulos et al., Phys. Rev. D 70, 092007 (2004)

    Article  ADS  Google Scholar 

  3. A. Lai et al., Phys. Lett. B 647, 341 (2007)

    Article  ADS  Google Scholar 

  4. F. Ambrosino et al., J. High Energy Phys. 0712, 105 (2007)

    ADS  Google Scholar 

  5. The FLAVIAnet Kaon Working Group, arXiv:0801.1817 [hep-ph]

  6. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  7. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Leutwyler, Ann. Phys. 235, 165 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  10. R. Urech, Nucl. Phys. B 433, 234 (1995)

    Article  ADS  Google Scholar 

  11. H. Neufeld, H. Rupertsberger, Z. Phys. C 68, 91 (1995)

    Article  ADS  Google Scholar 

  12. H. Neufeld, H. Rupertsberger, Z. Phys. C 71, 131 (1996)

    Article  ADS  Google Scholar 

  13. M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000)

    Article  ADS  Google Scholar 

  14. M. Jamin, J. Oller, A. Pich, Nucl. Phys. B 622, 279 (2002)

    Article  ADS  Google Scholar 

  15. M. Jamin, J.A. Oller, A. Pich, J. High Energy Phys. 0402, 047 (2004)

    Article  ADS  Google Scholar 

  16. M. Jamin, J.A. Oller, A. Pich, Phys. Rev. D 74, 074009 (2006)

    Article  ADS  Google Scholar 

  17. V. Bernard, M. Oertel, E. Passemar, J. Stern, Phys. Lett. B 638, 480 (2006)

    Article  ADS  Google Scholar 

  18. E. Passemar, arXiv:0708.1235 [hep-ph]

  19. V. Bernard, E. Passemar, Phys. Lett. B 661, 95 (2008)

    Article  ADS  Google Scholar 

  20. C.G. Callan, S.B. Treiman, Phys. Rev. Lett. 16, 153 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.F. Dashen, M. Weinstein, Phys. Rev. Lett. 22, 1337 (1969)

    Article  ADS  Google Scholar 

  22. V. Cirigliano et al., Eur. Phys. J. C 23, 121 (2002)

    Article  ADS  Google Scholar 

  23. J. Bijnens, P. Talavera, Nucl. Phys. B 669, 341 (2003)

    Article  ADS  Google Scholar 

  24. V. Cirigliano et al., J. High Energy Phys. 0504, 006 (2005)

    Article  ADS  Google Scholar 

  25. J. Bijnens, G. Colangelo, G. Ecker, Ann. Phys. 280, 100 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. V. Cirigliano, A. Pich, G. Ecker, H. Neufeld, J. High Energy Phys. 06, 012 (2003)

    Article  ADS  Google Scholar 

  27. J. Bijnens, K. Ghorbani, arXiv:0711.0148 [hep-ph]

  28. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985)

    Article  ADS  Google Scholar 

  29. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993)

    Article  ADS  Google Scholar 

  30. W.-M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33, 1 (2006)

    Article  ADS  Google Scholar 

  31. V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)

    Article  ADS  Google Scholar 

  32. V. Cirigliano, I. Rosell, J. High Energy Phys. 0710, 005 (2007)

    Article  ADS  Google Scholar 

  33. T. Alexopoulos et al., Phys. Rev. D 70, 092006 (2004)

    Article  ADS  Google Scholar 

  34. A. Lai et al., Phys. Lett. B 602, 41 (2004)

    Article  ADS  Google Scholar 

  35. A. Lai et al., Phys. Lett. B 604, 1 (2004)

    Article  ADS  Google Scholar 

  36. F. Ambrosino et al., Phys. Lett. B 632, 43 (2006)

    Article  ADS  Google Scholar 

  37. F. Ambrosino et al., Phys. Lett. B 636, 166 (2006)

    Article  ADS  Google Scholar 

  38. S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 42, 403 (2005)

    Article  ADS  Google Scholar 

  39. V. Cirigliano, H. Neufeld, H. Pich, Eur. Phys. J. C 35, 53 (2004)

    Article  ADS  Google Scholar 

  40. I.S. Towner, J.C. Hardy, Phys. Rev. C 77, 025501 (2008)

    Article  ADS  Google Scholar 

  41. P. Post, K. Schilcher, Eur. Phys. J. C 25, 427 (2002)

    Article  ADS  Google Scholar 

  42. H. Leutwyler, arXiv:0706.3138 [hep-ph]

  43. R. Dashen, Phys. Rev. 183, 1245 (1969)

    Article  ADS  Google Scholar 

  44. J. Bijnens, J. Prades, Nucl. Phys. B 490, 239 (1997)

    Article  ADS  Google Scholar 

  45. B. Moussallam, Nucl. Phys. B 504, 381 (1997)

    Article  ADS  Google Scholar 

  46. B. Ananthanarayan, B. Moussallam, J. High Energy Phys. 0604, 047 (2004)

    Article  MathSciNet  Google Scholar 

  47. H. Leutwyler, Phys. Lett. B 378, 313 (1996)

    Article  ADS  Google Scholar 

  48. H. Leutwyler, Nucl. Phys. Proc. Suppl. 64, 223 (1998)

    Article  ADS  Google Scholar 

  49. R. Kaiser, H. Leutwyler, in Proceedings, Workshop on Methods in Nonperturbative Quantum Field Theory, ed. by A.W. Schreiber, A.G. Williams, A.W. Thomas, Adelaide, Australia, 2–13 Feb. 1998 (World Scientific, Singapore, 1998), pp. 15–29

    Google Scholar 

  50. R. Kaiser, H. Leutwyler, Eur. Phys. J. C 17, 623 (2000)

    Article  MATH  ADS  Google Scholar 

  51. G. Amorós, J. Bijnens, P. Talavera, Nucl. Phys. B 602, 87 (2001)

    Article  ADS  Google Scholar 

  52. J. Bijnens, K. Ghorbani, J. High Energy Phys. 0711, 030 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Gell-Mann, Phys. Rev. 106, 1296 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. S. Okubo, Prog. Theor. Phys. 27, 949 (1962)

    Article  MATH  ADS  Google Scholar 

  55. J. Bijnens, P. Dhonte, J. High Energy Phys. 0310, 061 (2003)

    Article  ADS  Google Scholar 

  56. H. Leutwyler, M. Roos, Z. Phys. C 25, 91 (1984)

    Article  ADS  Google Scholar 

  57. V. Cirigliano et al., Nucl. Phys. B 753, 139 (2006)

    Article  MATH  ADS  Google Scholar 

  58. R. Kaiser, Nucl. Phys. B (Proc. Suppl.) 174, 97 (2007)

    Article  ADS  Google Scholar 

  59. G. Ecker, Private communication

  60. V. Cirigliano, M. Giannotti, H. Neufeld, arXiv:0807.4507 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Neufeld.

Additional information

This work was supported in part by EU Contract No. MRTN-CT-2006-035482, “FLAVIAnet”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastner, A., Neufeld, H. The K 3 scalar form factors in the standard model. Eur. Phys. J. C 57, 541–556 (2008). https://doi.org/10.1140/epjc/s10052-008-0703-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0703-6

Keywords

Navigation