Skip to main content
Log in

Numerical demodulation of a Gaussian white noise modulated in amplitude by a deterministic volatility

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Gaussian white noise modulated in amplitude is defined as the product of a Gaussian white noise and a slowly varying signal with strictly positive values, called volatility. It is a special case of the superstatistical systems with the amplitude as the single parameter associated to the environment variations. If the volatility is deterministic, then the demodulation, i.e., the separation of the two components from a measured time series, can be achieved by a moving average with the averaging window length optimized by the condition that the absolute values of the estimated white noise are uncorrelated. Using Monte Carlo experiments we show that the large scale deterministic volatility can be accurately numerically determined. The artificial deterministic volatilities have a variety of shapes comparable with those occurring in real financial time series. Applied to the daily returns of the S&P500 index, the demodulation algorithm indicates that the most part of the financial volatility is deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Taylor, Asset Price Dynamics, Volatility, and Prediction (Princeton University Press, Princeton, 2007)

  2. J.D. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994)

  3. J. Voit, The Statistical Mechanics of Financial Markets, 3rd edn. (Springer, Berlin, 2005)

  4. ARCH, Selected Readings, edited by R.F. Engle (Oxford University Press, Oxford, 1995)

  5. R. Cont, Quant. Financ. 1, 223 (2001)

    Article  Google Scholar 

  6. S. Van Bellegem, in Wiley Handbook in Financial Engineering and Econometrics: Volatility Models and Their Applications, edited by L. Bauwens, C. Hafner, S. Laurent (Wiley, New York, 2011), p. 323

  7. R. Dahlhaus, in Time Series Analysis: Methods and Applications, edited by T.S. Rao, S.S. Rao, C.R. Rao (North-Holland Publ., Oxford, 2012), p. 351

  8. L. Davies, C. Höhenrieder, W. Krämer, Comput. Stat. Data Anal. 56, 3623 (2012)

    Article  MATH  Google Scholar 

  9. D. Mercurio, V. Spokoiny, Ann. Statist. 32, 577 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.F. Engle, J.G. Rangel, Rev. Financ. Stud. 21, 1187 (2008)

    Article  Google Scholar 

  11. C. Vamoş, M. Crăciun, Phys. Rev. E 81, 051125 (2010)

    Article  ADS  Google Scholar 

  12. S.-H. Poon, A Practical Guide to Forecasting Financial Market Volatility, Wiley Finance Series (Wiley, Chichester, 2005)

  13. C. Vamoş, M. Crăciun, Phys. Rev. E 78, 036707 (2008)

    Article  ADS  Google Scholar 

  14. C. Vamoş, M. Crăciun, Automatic Trend Estimation (Springer, Dordrecht, 2012)

  15. S. Alfarano, F. Wagner, M. Milaković, Appl. Financ. Econ. Lett. 4, 311 (2008)

    Article  Google Scholar 

  16. F. Wagner, M. Milaković, S. Alfarano, Eur. Phys. J. B 73, 23 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T.G. Andersen, T. Bollerslev, F.X. Diebold, H. Ebens, J. Financ. Econ. 61, 43 (2001)

    Article  Google Scholar 

  18. C. Stărică, C. Granger, Rev. Econ. Stat. 87, 503 (2005)

    Article  Google Scholar 

  19. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Beck, Phil. Trans. R. Soc. A 369, 453 (2011)

    Article  ADS  MATH  Google Scholar 

  21. C. Beck, Braz. J. Phys. 39, 357 (2009)

    Article  ADS  Google Scholar 

  22. R. Hanel, S. Thurner, M. Gell-Mann, Proc. Natl. Acad. Sci. 108, 6390 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. V. Spokoiny, Ann. Statist. 37, 1405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Van Bellegem, R. von Sachs, Ann. Statist. 36, 1879 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.A. Schumpeter, Business Cycles. A Theoretical, Historical and Statistical Analysis of the Capitalist Process (McGraw-Hill, New York, 1939)

  26. S. Van Bellegem, R. von Sachs, Int. J. Forecasting 20, 611 (2004)

    Article  Google Scholar 

  27. E. Van der Straeten, C. Beck, Phys. Rev. E 80, 036108 (2009)

    Article  ADS  Google Scholar 

  28. A. Gerig, J. Vicente, M.A. Fuentes, Phys. Rev. E 80, 065102 (2009)

    Article  ADS  Google Scholar 

  29. Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, H.E. Stanley, Phys. Rev. E 60, 1390 (1999)

    Article  ADS  Google Scholar 

  30. P.J. Brockwell, R.A. Davies, Time Series: Theory and Methods (Springer Verlag, New York, 1996)

  31. G.E.P. Box, D.A. Pierce, J. Am. Stat. Assoc. 65, 1509 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.C. Escanciano, I.N. Lobato, J. Econom. 151, 140 (2009)

    Article  MathSciNet  Google Scholar 

  33. S.I. Resnick, Heavy tails Phenomena. Probabilistic and Statistical Modeling (Springer, New York, 2007)

  34. R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995)

    Article  ADS  Google Scholar 

  35. P. Gopikrishnan, V. Plerou, L.A. Nunes Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 5305 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Călin Vamoş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vamoş, C., Crăciun, M. Numerical demodulation of a Gaussian white noise modulated in amplitude by a deterministic volatility. Eur. Phys. J. B 86, 166 (2013). https://doi.org/10.1140/epjb/e2013-31072-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31072-x

Keywords

Navigation