Skip to main content
Log in

Overdamped motion of interacting particles in general confining potentials: time-dependent and stationary-state analyses

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, φ(x) = (α|x|z)/z (α > 0, z > 1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential (z = 2), have shown strong evidence that a q-Gaussian distribution, P(x,t), with q = 0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z = 2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z ≠ 2, all cases investigated fit well the analytical stationary solution P st(x), given in terms of a q-exponential (with the same index q = 0) of the general external potential φ(x). In this later case, we propose an approximate time-dependent P(x,t) (not known analytically for z ≠ 2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena, characterized by repulsive interacting particles under overdamped motion, present a universal behavior, in the sense that all of them are associated with the same entropic form and nonlinear Fokker-Planck equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Balian, From Microphysics to Macrophysics (Springer, Berlin, 1991), Vols. I and II

  2. L.E. Reichl, A Modern Course in Statistical Physics, 2nd edn. (Wiley, New York, 1998)

  3. R.T. Farouki, S. Hamaguchi, J. Chem. Phys. 101, 9885 (1994)

    Article  ADS  Google Scholar 

  4. P.K. Shukla, Phys. Plasma 8, 1791 (2001)

    Article  ADS  Google Scholar 

  5. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  6. S.A. Khrapak, O.S. Vaulina, G.E. Morfill, Phys. Plasma 19, 034503 (2012)

    Article  ADS  Google Scholar 

  7. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, New York, 2009)

  8. C.P. Poole Jr., H.A. Farach, R.J. Creswick, Superconductivity (Academic Press, London, 1995)

  9. G. Blatter, M.V. Feigel’man, V.B. Gerhkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  10. H.J. Jensen, A. Brass, A.J. Berlinsky, Phys. Rev. Lett. 60, 1676 (1988)

    Article  ADS  Google Scholar 

  11. O. Pla, F. Nori, Phys. Rev. Lett. 67, 919 (1991)

    Article  ADS  Google Scholar 

  12. R. Richardson, O. Pla, F. Nori, Phys. Rev. Lett. 72, 1268 (1994)

    Article  ADS  Google Scholar 

  13. S. Zapperi, A.A. Moreira, J.S. Andrade, Phys. Rev. Lett. 86, 3622 (2001)

    Article  ADS  Google Scholar 

  14. J.F. Wambaugh, C. Reichhardt, C.J. Olson, F. Marchesoni, F. Nori, Phys. Rev. Lett. 83, 5106 (1999)

    Article  ADS  Google Scholar 

  15. C.-S. Lee, B. Jankó, I. Derényi, A.-L. Barabási, Nature 400, 337 (1999)

    Article  ADS  Google Scholar 

  16. J.E. Villegas, S. Savelév, F. Nori, E.M. Gonzalez, J.V. Anguita, R. García, J.L. Vicent, Science 302, 1188 (2003)

    Article  ADS  Google Scholar 

  17. C.C. de Souza Silva, J. Van de Vondel, M. Morelle, V.V. Moshchalkov, Nature 440, 651 (2006)

    Article  ADS  Google Scholar 

  18. D. Cole, S. Bending, S. Savelév, A. Grigorenk, T. Tamegai, F. Nori, Nat. Mater. 5, 305 (2006)

    Article  ADS  Google Scholar 

  19. S. Savelév, F. Nori, Nat. Mater. 1, 179 (2002)

    Article  ADS  Google Scholar 

  20. T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer, Berlin, 2005)

  21. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  22. A.R. Plastino, A. Plastino, Physica A 222, 497 (1995)

    Article  MathSciNet  Google Scholar 

  23. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996)

    Article  ADS  Google Scholar 

  24. L. Borland, Phys. Lett. A 245, 67 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. L. Borland, Phys. Rev. E 57, 6634 (1998)

    Article  ADS  Google Scholar 

  26. M.A. Fuentes, M.O. Cáceres, Phys. Lett. A 372, 1236 (2008)

    Article  ADS  MATH  Google Scholar 

  27. E.M.F. Curado, F.D. Nobre, Phys. Rev. E 67, 021107 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. F.D. Nobre, E.M.F. Curado, G.A. Rowlands, Physica A 334, 109 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. A.R. Plastino, A. Plastino, Phys. Lett. A 174, 384 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  30. B.M. Boghosian, Phys. Rev. E 53, 4754 (1996)

    Article  ADS  Google Scholar 

  31. P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004)

    Article  ADS  Google Scholar 

  32. P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Article  ADS  MATH  Google Scholar 

  33. V. Schwämmle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 58, 159 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. M.S. Ribeiro, F.D. Nobre, E.M.F. Curado, Entropy 13, 1928 (2011)

    Article  MathSciNet  Google Scholar 

  35. V. Schwämmle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 70, 107 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. T.D. Frank, A. Daffertshofer, Physica A 272, 497 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  37. T.D. Frank, A. Daffertshofer, Physica A 295, 455 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. P.H. Chavanis, Phys. Rev. E 68, 036108 (2003)

    Article  ADS  Google Scholar 

  39. P.H. Chavanis, Physica A 340, 57 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. V. Schwämmle, F.D. Nobre, E.M.F. Curado, Phys. Rev. E 76, 041123 (2007)

    Article  ADS  Google Scholar 

  41. J.S. Andrade, G.F.T. da Silva, A.A. Moreira, F.D. Nobre, E.M.F. Curado, Phys. Rev. Lett. 105, 260601 (2010)

    Article  ADS  Google Scholar 

  42. M.S. Ribeiro, F.D. Nobre, E.M.F. Curado, Phys. Rev. E 85, 021146 (2012)

    Article  ADS  Google Scholar 

  43. P. Mausbach, H.O. May, Fluid Phase Equilib. 249, 17 (2006)

    Article  Google Scholar 

  44. S. Savelév, F. Marchesoni, F. Nori, Phys. Rev. Lett. 91, 010601 (2003)

    Article  ADS  Google Scholar 

  45. S. Savelév, F. Marchesoni, F. Nori, Phys. Rev. E 70, 061107 (2004)

    Article  ADS  Google Scholar 

  46. V. Schwammle, F.D. Nobre, C. Tsallis, Eur. Phys. J. B 66, 537 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.S. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, M., Nobre, F. & Curado, E. Overdamped motion of interacting particles in general confining potentials: time-dependent and stationary-state analyses. Eur. Phys. J. B 85, 399 (2012). https://doi.org/10.1140/epjb/e2012-30671-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30671-3

Keywords

Navigation