Skip to main content
Log in

A comparison between the quasi-species evolution and stochastic quantization of fields

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The quasi-species equation describes the evolution of the probability that a random individual in a population carries a given genome. Here we map the quasi-species equation for individuals of a self-reproducing population to an ensemble of scalar field elementary units undergoing a creation and annihilation process. In this mapping, the individuals of the population are mapped to field units and their genome to the field value. The selective pressure is mapped to an inverse temperature β of the system regulating the evolutionary dynamics of the fields. We show that the quasi-species equation if applied to an ensemble of field units gives in the small β limit can be put in relation with existing stochastic quantization approaches. The ensemble of field units described by the quasi-species equation relaxes to the fundamental state, describing an intrinsically dissipative dynamics. For a quadratic dispersion relation the mean energy ⟨U⟩ of the system changes as a function of the inverse temperature β. For small values of β the average energy ⟨U⟩ takes a relativistic form, for large values of β, the average energy ⟨U⟩ takes a classical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Fisher,The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930)

  2. M.A. Nowak,Evolutionary Dynamics (Belknap Press, Cambridge, MA, 2006)

  3. M. Eigen, Die Naturwissenschaften 64, 541 (1977)

    Article  ADS  Google Scholar 

  4. E. Baake, M. Baake, H. Wagner, Phys. Rev. Lett. 78, 559 (1997)

    Article  ADS  Google Scholar 

  5. S. Leibler, E. Kussell, Proc. Natl. Acad. Sci. USA 107, 13183 (2010)

    Article  ADS  Google Scholar 

  6. L. Peliti, Europhys. Lett. 57, 745 (2002)

    Article  ADS  Google Scholar 

  7. G. Bianconi, C. Rahmede, Chaos, Solitons and Fractals 45, 555 (2012)

    Article  Google Scholar 

  8. R. Feistel, W. Ebeling, Evolution of Complex Systems (Kluwer Academic Publishers, Berlin, 1989)

  9. J. Dunkel, W. Ebeling, L. Shimansky-Geier, P. Hänggi, Phys. Rev. E 67, 061118 (2003)

    Article  ADS  Google Scholar 

  10. J. Dunkel, S. Hilbert, L. Shimansky-Geier, P. Hänggi, Phys. Rev. E 69,056118 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Bianconi, C. Rahmede, Phys. Rev. E 83, 056104 (2011)

    Article  ADS  Google Scholar 

  12. J.F.C. Kingman, J. Appl. Probab. 15, 1 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.N. Coppersmith, R.D. Blanck, L.P. Kadanoff, J. Statist. Phys. 97,1999 (2004)

    Google Scholar 

  14. G. Bianconi, O. Rotzschke, Phys. Rev. E 82, 036109 (2010)

    Article  ADS  Google Scholar 

  15. J.-M. Park, M.W. Deem, J. Stat. Phys. 125, 975 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Pastor-Satorras, R. Solé, SantaFe working papers, http://www.santafe.edu/media/workingpapers/01-05-024.pdf

  17. M. Sasai, P.G. Wolynes, Proc. Natl. Acad. Sci. 100, 2374 (2003)

    Article  ADS  Google Scholar 

  18. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1996)

  19. G. Parisi, Y. Wu, Sci. Sin. 24, 483 (1981)

    MathSciNet  Google Scholar 

  20. G. Jona-Lasinio, P.K. Mitter, Commun. Math. Phys. 101, 409 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Namiki, Stochastic quantization (Springer-Verlag, Berlin, 1992)

  22. V. Mustonen, M. Lässig, Proc. Natl. Acad. Sci. 107, 4248 (2010)

    Article  ADS  Google Scholar 

  23. O. Hallatschek, Proc. Natl. Acad. Sci. 108, 1783 (2011)

    Article  ADS  Google Scholar 

  24. J. Maynard Smith, Proc. R. Soc. Lond. B 219, 315 (1983)

    Article  ADS  MATH  Google Scholar 

  25. J.B. Anderson, J. Chem. Phys. 63 1499 (1975)

    Article  ADS  Google Scholar 

  26. N. Cerf, O.C. Martin, Phys. Rev. E 51, 3679 (1995)

    Article  ADS  Google Scholar 

  27. M. Rousset, G. Stoltz, J. Stat. Phys. 123, 1251 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. F. Schweitzer, L. Schimansky-Geier, Physica A 206, 359 (1994)

    Article  ADS  Google Scholar 

  29. E.Schrödinger, What is life?: The physical aspect of the living cell (Cambridge University Press, Cambridge, 1944)

  30. S. Lloyd, Nature Phys. 5, 164 (2009)

    Article  ADS  Google Scholar 

  31. D. Abbott, P. Davies, A.K. Pati, Quantum Aspects of Life(Imperial College Press, London, 2008)

  32. N. Goldenfeld, C. Woese, Ann. Rev. Cond. Matt. Phys. 2, 375 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bianconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianconi, G., Rahmede, C. A comparison between the quasi-species evolution and stochastic quantization of fields. Eur. Phys. J. B 85, 197 (2012). https://doi.org/10.1140/epjb/e2012-20681-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20681-6

Keywords

Navigation