Skip to main content
Log in

Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Random walks on complex networks, especially scale-free networks, have attracted considerable interest in the past few years. A lot of previous work showed that the average receiving time (ART), i.e., the average of mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) averaged over all starting points in scale-free small-world networks exhibits a sublinear or linear dependence on network order N (number of nodes), which indicates that hub nodes are very efficient in receiving information if one looks upon the random walker as an information messenger. Thus far, the efficiency of a hub node sending information on scale-free small-world networks has not been addressed yet. In this paper, we study random walks on the class of Koch networks with scale-free behavior and small-world effect. We derive some basic properties for random walks on the Koch network family, based on which we calculate analytically the average sending time (AST) defined as the average of MFPTs from a hub node to all other nodes, excluding the hub itself. The obtained closed-form expression displays that in large networks the AST grows with network order as N ln N, which is larger than the linear scaling of ART to the hub from other nodes. On the other hand, we also address the case with the information sender distributed uniformly among the Koch networks, and derive analytically the global mean first-passage time, namely, the average of MFPTs between all couples of nodes, the leading scaling of which is identical to that of AST. From the obtained results, we present that although hub nodes are more efficient for receiving information than other nodes, they display a qualitatively similar speed for sending information as non-hub nodes. Moreover, we show that that AST from a starting point (sender) to all possible targets is not sensitively affected by the sender’s location. The present findings are helpful for better understanding random walks performed on scale-free small-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  2. S.N. Dorogvtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavezf, D.-U. Hwanga, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. D.J. Watts, H. Strogatz, Nature (London) 393, 440 (1998)

    Article  ADS  Google Scholar 

  6. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  7. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  8. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  9. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  10. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  11. F.C. Santos, M.D. Santos, J.M. Pacheco, Nature (London) 454, 213 (2008)

    Article  ADS  Google Scholar 

  12. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Kittas, S. Carmi, S. Havlin, P. Argyrakis, EPL 84, 40008 (2008)

    Article  ADS  Google Scholar 

  14. Z.Z. Zhang, Y. Qi, S.G. Zhou, W.L. Xie, J.H. Guan, Phys. Rev. E 79, 021127 (2009)

    Article  ADS  Google Scholar 

  15. Z.Z. Zhang, J.H. Guan, W.L. Xie, Y. Qi, S.G. Zhou, Europhys. Lett. 86, 10006 (2009)

    Article  ADS  Google Scholar 

  16. E. Agliari, R. Burioni, Phys. Rev. E 80, 031125 (2009)

    Article  ADS  Google Scholar 

  17. V. Tejedor, O. Bénichou, R. Voituriez, Phys. Rev. E 80, (R)065104 (2009)

  18. E. Agliari, R. Burioni, A. Manzotti, Phys. Rev. E 82, 011118 (2010)

    Article  ADS  Google Scholar 

  19. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

  20. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)

    Article  ADS  Google Scholar 

  21. C. Chennubhotla, I. Bahar, PLoS Comput. Biol. 3, 1716 (2007)

    MathSciNet  Google Scholar 

  22. E. Bollt, D. ben-Avraham, New J. Phys. 7, 26 (2005)

    Article  Google Scholar 

  23. Z.Z. Zhang, S.G. Zhou, W.L. Xie, L.C. Chen, Y. Lin, J.H. Guan, Phys. Rev. E 79, 061113 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Z.Z. Zhang, S.Y. Gao, L.C. Chen, S.G. Zhou, H.J. Zhang, J. H. Guan, J. Phys. A 43, 395101 (2010)

    Article  MathSciNet  Google Scholar 

  25. R. Metzler, J. Klafter, J. Phys. A 37, R161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. J.D. Noh, H. Rieger, Phys. Rev. E 69, 036111 (2004)

    Article  ADS  Google Scholar 

  27. V. Sood, S. Redner, D. ben-Avraham, J. Phys. A 38, 109 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Baronchelli, V. Loreto, Phys. Rev. E 73, 026103 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, J. Klafter, Nature (London) 450, 77 (2007)

    Article  ADS  Google Scholar 

  30. L.K. Gallos, C. Song, S. Havlin, H.A. Makse, Proc. Natl. Acad. Sci. USA 104, 7746 (2007)

    Article  ADS  Google Scholar 

  31. S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, J. Klafter, Proc. Natl. Acad. Sci. USA 105, 5675 (2008)

    Article  ADS  Google Scholar 

  32. O. Bénichou, C. Chevalier, J. Klafter, B. Mayer, R. Voituriez, Nat. Chem. 2, 472 (2010)

    Article  Google Scholar 

  33. O. Bénichou, D. Grebenkov, P. Levitz, C. Loverdo, R. Voituriez, Phys. Rev. Lett. 105, 150606 (2010)

    Article  Google Scholar 

  34. A. Lakhtakia, V.K. Varadan, R. Messier, V.V. Varadan, J. Phys. A 20, 3537 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Havlin, D. ben-Avraham, Adv. Phys. 36, 695 (1987)

    Article  ADS  Google Scholar 

  36. Z.Z. Zhang, Y.C. Zhang, S.G. Zhou, M. Yin, J.H. Guan, J. Math. Phys. 50, 033514 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Aldous, J. Fill, Reversible Markov chains and random walks on graphs (1999), http://www.stat.berkeley.edu/ aldous/RWG/Chap2.pdf

  38. A.N. Samukhin, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 77, 036115 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, in Proceedings of the 21st Annnual ACM Symposium on the Theory of Computing (ACM Press, New York, 1989), pp. 574–586

  40. P. Tetali, J. Theor. Probab. 4, 101 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. P.G. Doyle, J.L. Snell, Random Walks and Electric Networks (The Mathematical Association of America, Oberlin, OH, 1984), e-print arXiv:math.PR/0001057

  42. Z.Z. Zhang, Y. Lin, Y.J. Ma, J. Phys. A 44, 075102 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Gao, S. Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks. Eur. Phys. J. B 80, 209–216 (2011). https://doi.org/10.1140/epjb/e2011-10863-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10863-1

Keywords

Navigation