Skip to main content
Log in

Androclinic embryoidogenesis in vitro in cereals

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Some aspects of the formation and development of cereal androclinic embryoids under in vitro conditions are discussed. The morphological and cyto-histological characterization of developmental stages in embryoids is given, and possible means of forming patterns in the course of embryoidogenesis are considered. Some factors controlling the in vitro morphogenesis of cereal androclinic embryoids are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Advanced in Haploid Production in Higher Plants, Touraev, A., Forster, B.P., and Jain, S.M., Eds., Netherlands: Springer-Verlag, 2009.

    Google Scholar 

  • Aionesei, T., Touraev, A., and Heberle-Bors, E., Pathways to microspore embryogenesis, Biotechnol. Agr. For., 2005, vol. 56, pp. 11–34.

    Google Scholar 

  • Asif, M., Progress and Opportunities of Doubled Haploid Production, New York: Springer-Verlag, 2013.

    Google Scholar 

  • Asif, M., Eudes, F., Goyal, A., et al., Organelle antioxidants improve microspore embryogenesis in wheat and triticale, In Vitro Cell Dev. Biol. Plant., 2013, vol. 49, no. 5, pp. 489–497.

    CAS  Google Scholar 

  • Asif, M., Eudes, F., Randhawa, H., et al., Phytosulfokine-alpha enhances microspore embryogenesis in both triticale and wheat, Plant Cell, Tissue Organ Cult., 2014, vol. 116, no. 1, pp. 125–130.

    CAS  Google Scholar 

  • Babbar, Sh.B., Kumari, N., and Mishra, J.K., In vitro androgenesis: events preceding its cytological manifestation, in Plant Biotechnology and Molecular Markers, Srivastava, P.S., Narula, A., and Srivastava, Sh., Eds., New Delhi: Anamaya Publ., 2004, pp. 1–17.

    Google Scholar 

  • Batygina, T.B., Critical periods used to embryonal structures, in XVIIth Congr. on Sexual Plant Reproduction, Abstract of Papers, Lublin, 2002, p. 33.

    Google Scholar 

  • Batygina, T.B., Khlebnoe zerno: atlas (Bread Grain: An Atlas), Leningrad: Nauka, 1987.

    Google Scholar 

  • Batygina, T.B., Morphogenetic resources of reproductive structures: totipotency and determinancy, in III s”ezd Vseros. O-va fiziologov rastenii, Tezisy dokladov (The III Congr. Russ. Society of Plant Physiologists, Abstracts of Papers), St. Petersburg: S.-Peterb. Gos. Univ., 1993, p. 65.

    Google Scholar 

  • Batygina, T.B. and Rudskii, I.V., Role of stem cells in plant morphogenesis, Dokl. Biol. Sci., 2006, vol. 410, no. 1, pp. 400–402.

    CAS  PubMed  Google Scholar 

  • Batygina, T.B., Titova, G.E., Shamrov, I.I., et al., A problem of the stem cells in the plants, in Mater. X Shkoly po teoreticheskoi morfologii rastenii “Konstruktsionnye edinitsy v morfologii rastenii” (Proc. X School on Theoretical Morphology of the Plants “Constructional Units Used in the Plant Morphology”), Kirov: Vyatsk. Gos. Univ., 2004, pp. 20–30.

    Google Scholar 

  • Batygina, T.B., Kruglova, N.N., Gorbunova, V.Yu., et al., Ot mikrospory — k sortu (From Microspore to the Cultivar), Moscow: Nauka, 2010.

    Google Scholar 

  • Batygina, T.B. and Vasilyeva, V.E., Periodization of development of reproductive structures. Critical periods, Acta Biol. Cracov., Ser. Bot., 2003, vol. 45, no. 1, pp. 27–36.

    Google Scholar 

  • Baudino, S., Hansen, H., Brettschneider, R., et al., Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family, Planta, 2001, vol. 213, no. 1, pp. 1–10.

    CAS  PubMed  Google Scholar 

  • Belinskaya, E.V., Influence of pre-treatment of the ears on efficiency of induction of barley haploids in the anther culture in vitro, Fiziol. Biokhim. Kul’t. Rast., 2005, vol. 37, no. 5, pp. 436–442.

    Google Scholar 

  • Bonet, F.J. and Olmedilla, A., Structural changes during early embryogenesis in wheat pollen, Protoplasma, 2000, vol. 211, nos. 1–2, pp. 94–102.

    Google Scholar 

  • Borderies, G., Bechec, M., Rossignol, M., et al., Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development, Eur. J. Cell Biol., 2004, vol. 83, no. 5, pp. 205–212.

    CAS  PubMed  Google Scholar 

  • Bossio, E., Diaz Paleo, A., del Vas, M., et al., Silencing of the glutathione biosynthetic pathway inhibits somatic embryogenesis in wheat, Plant Cell, Tissue Organ Cult., 2013, vol. 112, no. 2, pp. 239–248.

    CAS  Google Scholar 

  • Boutilier, K., Fiers, A., Liu, C.-M., et al., Biochemical and molecular aspects of haploid embryogenesis, Biotechnol. Agr. For., 2005, vol. 56, pp. 73–95.

    CAS  Google Scholar 

  • Brisibe, E.A., Gajdosova, A., Olesen, A., et al., Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat, J. Exp. Bot., 2000, vol. 51, no. 343, pp. 187–196.

    CAS  PubMed  Google Scholar 

  • Butenko, R.G., Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove (Biology of the Higher Plant Cells and Their Cultivation in vitro), Moscow: FBK-PRESS, 1999.

    Google Scholar 

  • Cistue, L., Romagosa, I., Batlle, F., et al., Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture, Plant Cell Rep., 2009, vol. 28, no. 5, pp. 727–735.

    CAS  PubMed  Google Scholar 

  • Clement, C., Sangwan, R.S., and Sangwan-Norreel, B., Microspore embryo induction and development in higher plants: cytological and ultrastructural aspects, Biotechnol. Agric. For., 2005, vol. 56, pp. 53–72.

    Google Scholar 

  • Coskun, Y. and Savaskan, C., Advances in isolated microspore culture for the production of plant regeneration of Turkish durum wheat genotypes, J. Biotechnol., 2012, vol. 161,suppl., p. 47.

    Google Scholar 

  • Cummins, I., O’Hagan, D., Jablonkai, I., et al., Cloning, characterization, and regulation of a family of phi class glutathione transferases from wheat, Plant Mol. Biol., 2003, vol. 52, no. 3, pp. 591–603.

    CAS  PubMed  Google Scholar 

  • Daghma, D.S., Kumlehn, J., Hensel, G., et al., Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L.), J. Exp. Bot., 2012, vol. 63, no. 16, pp. 6017–6021.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Datta, S.K., Androgenic haploids: factors controlling development and its application in crop improvement, Curr. Sci., 2005, vol. 89, no. 11, pp. 1870–1878.

    CAS  Google Scholar 

  • De Gara, L., de Pinto, M.C., Moliterni, V.M.C., et al., Redox regulation and storage processes during maturation in kernels of Triticum durum, J. Exp. Bot., 2003, vol. 54, no. 381, pp. 249–258.

    PubMed  Google Scholar 

  • Dogramci-Altuntepe, M., Peterson, T.S., and Jahuar, P.P., Anther culture derived regenerants of durum wheat and their cytological characterization, J. Hered., 2001, vol. 92, no. 1, pp. 56–64.

    Google Scholar 

  • Dornez, E., Croes, E., Gebruers, K., et al., Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense, Crit. Rev. Plant Sci., 2010, vol. 29, no. 4, pp. 244–264.

    CAS  Google Scholar 

  • Dubas, E., Wedzony, M., Petrovska, B., et al., Cell structural reorganization during induction of androgenesis in isolated microspore cultures of TriticaleTriticosecale Wittm.), Acta Biol. Cracov. Bot., 2010, vol. 52, no. 1, pp. 73–86.

    Google Scholar 

  • Dubas, E., Custers, J., Kieft, H., et al., Microtubule configurations and nuclear DNA synthesis during initiation of suspensor-bearing embryos from Brassica napus cv. Topas microspores, Plant Cell Rep., 2011, vol. 30, no. 11, pp. 2105–2116.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunwell, J.M., Haploids in flowering plants: origins and exploitation, Plant Biotechnol. J., 2010, vol. 8, no. 4, pp. 377–424.

    CAS  PubMed  Google Scholar 

  • Ellis, M., Egelund, J., Schultz, C.J., et al., Arabinogalactanproteins: key regulators at the cell surface?, Plant Physiol., 2010, vol. 153, no. 2, pp. 403–419.

    PubMed Central  CAS  Google Scholar 

  • Ferrie, A.M.R. and Caswell, K.L., Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production, Plant Cell, Tissue Organ Cult., 2011, vol. 104, no. 3, pp. 301–309.

    Google Scholar 

  • Ferrie, A.M.R., Irmen, K.I., Beattie, A.D., et al., Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: effect of pre-culture and post-culture conditions, Plant Cell, Tissue Organ Cult., 2014, vol. 116, no. 1, pp. 89–96.

    CAS  Google Scholar 

  • Fischer, C., Speth, V., Fleig-Eberenz, S., et al., Induction of zygotic polyembryos in wheat: influence of auxin polar transport, Plant Cell, 1997, vol. 9, no. 10, pp. 1767–1780.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forster, B.P., Heberle-Bors, E., Kasha, K.J., et al., The resurgence of haploids in higher plants, Trends Plant Sci., 2007, vol. 12, no. 8, pp. 368–375.

    CAS  PubMed  Google Scholar 

  • Germana, M.A., Anther culture for haploid and doubled haploid production, Plant Cell, Tissue Organ Cult., 2011, vol. 104, no. 3, pp. 283–300.

    Google Scholar 

  • Goralski, G., Rozier, F., Matthys-Rochon, E., et al., Cytological features of various microspore derivatives appearing during culture of isolated maize microspores, Acta Biol. Cracov., Ser. Bot., 2005, vol. 47, no. 1, pp. 75–83.

    Google Scholar 

  • Grover, A., Plant chitinases: genetic diversity and physiological roles, Crit. Rev. Plant Sci., 2012, vol. 31, no. 1, pp. 57–73.

    CAS  Google Scholar 

  • Guasmi, F., Elfalleh, W., Hannachi, Y., et al., Influence of various physical parameters on anther culture of barley, J. Plant Nutr., 2013, vol. 36, no. 5, pp. 836–847.

    CAS  Google Scholar 

  • Guzman, M. and Zapata-Arias, F.J., Increasing anther culture efficiency in rice (Oryza sativa L.) using anthers from rationed plants, Plant Sci., 2000, vol. 151, no. 2, pp. 107–114.

    CAS  PubMed  Google Scholar 

  • Hadfi, K., Speth, V., and Neuhaus, G., Auxin-induced developmental patterns in Brassica juncea embryos, Development, 1998, vol. 125, no. 5, pp. 879–887.

    CAS  PubMed  Google Scholar 

  • Hause, B., van Veenendaal, W.L.H., Hause, G., et al., Expression of polarity during early development of microspore derived and zygotic embryos of Brassica napus L. cv. Topas, Bot. Acta, 1994, vol. 107, no. 6, pp. 407–415.

    Google Scholar 

  • Hays, D.B., Yeung, E.C., and Pharis, R.P., The role of gibberellins in embryo axis development, J. Exp. Bot., 2000, vol. 51, no. 352, pp. 1851–1859.

    CAS  PubMed  Google Scholar 

  • Hays, D.B., Reid, D.M., Yeung, E.C., et al., Role of ethylene in cotyledon development of microspore-derived embryos of Brassica napus, J. Exp. Bot., 2002, vol. 53, no. 375, pp. 1747–1751.

    CAS  PubMed  Google Scholar 

  • Hosp, J., Maraschin, S.F., Touraev, A., et al., Functional genomics of microspore embryogenesis, Euphytica, 2007, vol. 158, no. 3, pp. 275–285.

    Google Scholar 

  • Ignatova, S.A., Kletochnye biotekhnologii v rastenievodstve, genetike i selektsii rastenii: zadachi, vozmozhnosti razrabotki sistem in vitro (Cell Biotechnologies in the Plant Growing, Genetics, and Plant Breeding: Tasks and Possible Growing in vitro), Odessa: Astroprint, 2011.

    Google Scholar 

  • Indrianto, A., Barinova, I., Touraev, A., et al., Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo, Planta, 2001, vol. 212, no. 2, pp. 163–174.

    CAS  PubMed  Google Scholar 

  • Islam, S.M.S. and Tuteja, N., Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species, Plant Sci., 2012, vol. 182, pp. 134–144.

    CAS  PubMed  Google Scholar 

  • Ivanov, V.B., The problem of stem cells in plants, Russ. J. Dev. Biol., 2003, vol. 34, no. 4, pp. 205–212.

    Google Scholar 

  • Jacquard, C., Mazeyrat-Gourbeyre, F., Devaux, P., et al., Microspore embryogenesis in barley: anther pre-treatment stimulates plant defense gene expression, Planta, 2009, vol. 229, no. 2, pp. 393–402.

    CAS  PubMed  Google Scholar 

  • Jenik, P.D. and Barton, M.K., Surge and destroy: the role of auxin in plant embryogenesis, Development, 2005, vol. 132, no. 16, pp. 3577–3585.

    CAS  PubMed  Google Scholar 

  • Kim, I., Kobayashi, K., Cho, E., et al., Subdomains for transport via plasmodesma corresponding to the apical-basal axis are established during Arabidopsis embryogenesis, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 33, pp. 11945–11950.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koike, M., Okamoto, T., Tsuda, S., et al., A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation, Biochem. Biophys. Res. Commun., 2002, vol. 298, no. 1, pp. 46–53.

    CAS  PubMed  Google Scholar 

  • Kruglova, N.N., Periods of development of cereal anthers as the methodological aspect in study of androgenesis in vitro, Izv. Ross. Akad. Nauk, Ser. Biol., 1999, no. 3, pp. 275–281.

    Google Scholar 

  • Kruglova, N.N., Morfogenez v kul’ture pyl’nikov pshenitsy: embriologicheskii podkhod (Morphogenesis in the Anther Culture in vitro: Embryologic Approach), Ufa: Gilem, 2001.

    Google Scholar 

  • Kruglova, N.N., Cereal microspore as the model system for investigation of morphogenesis, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Biol. Inst., Ross. Akad. Nauk, 2002.

    Google Scholar 

  • Kruglova, N.N., Innovative biotechnology of androclinous haploidy of the winter soft wheat: embryological approach, Agrar. Ross., 2009a, no. 1, pp. 34–39.

    Google Scholar 

  • Kruglova, N.N., The problem of unification of terminology at development of innovative biotechnology of androclinous haploidy in vitro, Fiziol. Biokhim. Kul’t. Rast., 2009b, vol. 41, no. 6, pp. 476–486.

    Google Scholar 

  • Kruglova, N.N., Optimization of biotechnological obtaining of wheat in vitro, Izv. Ufim. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, no. 3, pp. 57–61.

    Google Scholar 

  • Kruglova, N.N. and Batygina, T.B., Stress as a factor for induction of androclinia in cereals. Competent object for stress effect, Usp. Sovrem. Biol., 2001, vol. 121, no. 1, pp. 67–78.

    Google Scholar 

  • Kruglova, N.N., Batygina, T.B., Gorbunova, V.Yu., et al., Embriologicheskie osnovy androklinii pshenitsy: atlas (Embryological Principles of Wheat Androclinia: Atlas), Moscow: Nauka, 2005.

    Google Scholar 

  • Kruglova, N.N., Batygina, T.B., and Sel’dimirova, O.A., Morphogenetic potential of sporogenic cells of cereal anthers, Usp. Sovrem. Biol., 2000, vol. 120, no. 5, pp. 490–500.

    Google Scholar 

  • Kruglova, N.N., Gorbunova, V.Yu., and Kukso, P.A., Morphogenesis in the culture of isolated anthers: a role of phytohormones, Usp. Sovrem. Biol., 1999, vol. 119, no. 6, pp. 567–577.

    CAS  Google Scholar 

  • Kruglova, N.N. and Kukso, P.A., Stress induction of androclinia, Usp. Sovrem. Biol., 2006a, vol. 126, no. 3, pp. 275–285.

    Google Scholar 

  • Kruglova, N.N. and Kukso, P.A., Initial cell of androclinia, Fiziol. Biokhim. Kul’t. Rast., 2006b, vol. 38, no. 4, pp. 279–291.

    Google Scholar 

  • Kruglova, N.N. and Kukso, P.A., Initial step of androclinia, Usp. Sovrem. Biol., 2006c, vol. 126, no. 5, pp. 462–471.

    Google Scholar 

  • Kruglova, N.N. and Sel’dimirova, O.A., Regeneratsiya pshenitsy in vitro i ex vitro: tsitogistologicheskie aspekty (Wheat Regeneration in vitro and ex vitro: Cytohistological Aspects), Ufa: Gilem, 2011.

    Google Scholar 

  • Lantos, C., Bona, L., Boda, K., et al., Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid TriticaleTriticosecale Wittmack) for androgenic parameters, Euphytica, 2014, vol. 197, no. 1, pp. 27–37.

    CAS  Google Scholar 

  • Leljak-Levanic, D., Juranic, M., and Sprunk, S., De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation, Plant Reprod., 2013, vol. 26, no. 3, pp. 267–285.

    CAS  PubMed  Google Scholar 

  • Letarte, J., Simion, E., Miner, M., et al., Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture, Plant Cell Rep., 2006, vol. 25, no. 12, pp. 691–698.

    Google Scholar 

  • Li, J., Multi-tasking of somatic embryogenesis receptor-like protein kinases, Curr. Opin. Plant Biol., 2010, vol. 13, no. 5, pp. 509–514.

    CAS  Google Scholar 

  • Li, H. and Devaux, P., Enhancement of microspore culture efficiency of recalcitrant barley genotypes, Plant Cell Rep., 2001, vol. 20, no. 6, pp. 475–481.

    CAS  Google Scholar 

  • Lin, Z., Ni, Z., Zhang, Y., et al., Isolation and characterization of 18 genes encoding α- and β-expansins in wheat (Triticum aestivum L.), Mol. Gen. Genomics, 2005, vol. 274, no. 5, pp. 548–556.

    CAS  Google Scholar 

  • Liu, C. and Mehdy, M.C., A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis, Plant Physiol., 2007, vol. 145, no. 3, pp. 863–874.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Magnard, J.L., Le Deunff, E., Domenech, J., et al., Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize, Plant Mol. Biol., 2000, vol. 44, no. 4, pp. 559–574.

    CAS  PubMed  Google Scholar 

  • Maraschin, S.F., de Priester, W., Spaink, H.P., et al., Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective, J. Exp. Bot., 2005a, vol. 56, no. 417, pp. 1711–1726.

    CAS  PubMed  Google Scholar 

  • Maraschin, S.F., Vennik, M., Lamers, G.E., et al., Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos, Planta, 2005b, vol. 220, no. 4, pp. 531–540.

    CAS  Google Scholar 

  • Maraschin, S.F., Caspers, M., Potokina, E., et al., cDNA array analysis of stress-induced gene expression in barley androgenesis, Physiol. Plant., 2006, vol. 127, no. 4, pp. 535–550.

    CAS  Google Scholar 

  • Massonneau, A., Coronado, M.J., Audran, A., et al., Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities, Eur. J. Cell Biol., 2005, vol. 84, no. 7, pp. 663–675.

    CAS  PubMed  Google Scholar 

  • Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, no. 4, pp. 502–514.

    CAS  Google Scholar 

  • Munoz-Amatriain, M., Svensson, J.T., Castillo, A.M., et al., Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis, Physiol. Plant., 2006, vol. 127, no. 4, pp. 551–560.

    CAS  Google Scholar 

  • Munoz-Amatriain, M., Svensson, J.T., Castillo, A.M., et al., Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production, Funct. Integr. Genomics, 2009, vol. 9, no. 3, pp. 311–323.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oleszczuk, S., Sowa, S., and Zimny, J., Androgenic response to pre-culture stress in microspore cultures of barley, Protoplasma, 2006, vol. 228, nos. 1–3, pp. 95–100.

    CAS  PubMed  Google Scholar 

  • Paire, A., Devaux, P., Lafitte, C., et al., Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation, Plant Cell, Tissue Organ Cult., 2003, vol. 73, no. 2, pp. 167–176.

    CAS  Google Scholar 

  • Patel, M., Darvey, N.L., Marshall, D.R., et al., Optimization of culture conditions for improved plant regeneration efficiency from wheat microspore culture, Euphytica, 2004, vol. 140, no. 3, pp. 197–204.

    CAS  Google Scholar 

  • Prem, D., Solis, M.-T., Barany, I., et al., A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus, BMC Plant Biol., 2012, vol. 12, no. 8, pp. 127–144.

    PubMed Central  PubMed  Google Scholar 

  • Pulido, A., Hernando, A., Bakos, F., et al., Hordeins are expressed in microspore-derived embryos and also during male gametophytic and very early stages of seed development, J. Exp. Bot., 2006, vol. 57, no. 11, pp. 2837–2846.

    CAS  PubMed  Google Scholar 

  • Pulido, A., Bakos, F., Devic, M., et al., HvPG1 and ECA1: two genes activated transcriptionally in the transition of barley microspores from the gametophytic to the embryogenic pathway, Plant Cell Rep., 2009, vol. 28, no. 4, pp. 551–559.

    CAS  PubMed  Google Scholar 

  • Ramirez, C., Testillano, P.S., Castillo, A.M., et al., The early microspore embryogenesis pathway in barley is accompanied by concrete ultrastructural and expression changes, Int. J. Dev. Biol., 2001, vol. 45, suppl. 1, pp. 57–58.

    Google Scholar 

  • Rodriguez-Serrano, M., Barany, I., Prem, D., et al., NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley, J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2007–2024.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubtsova, M., Gnad, H., Melzer, M., et al., The auxins centrophenoxine and 2,4-D differ in their effects on nondirectly induced chromosome doubling in another culture of wheat (T. aestivum L.), Plant Biotechnol. Rep., 2013, vol. 7, no. 3, pp. 247–255.

    Google Scholar 

  • Rybczynski, J.J., Simonson, R.L., and Baenziger, P.S., Evidence for microspore embryogenesis in wheat anther culture, In Vitro Cell. Dev. Biol., 1991, vol. 27, no. 4, pp. 168–174.

    Google Scholar 

  • Sanchez-Diaz, R.-A., Castillo, A.M., and Valles, M.P., Microspore embryogenesis in wheat: new marker genes for early, middle, and late stages of embryo development, Plant Reprod., 2013, vol. 26, no. 3, pp. 287–296.

    CAS  PubMed  Google Scholar 

  • Segui-Simarro, J.M. and Nuez, F., How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis, Physiol. Plant., 2008, vol. 134, no. 1, pp. 1–12.

    CAS  PubMed  Google Scholar 

  • Sel’dimirova, O.A., Morphogenesis of wheat embryoid in vitro and embryo in vivo, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Ufa: Bashkir. Gos. Univ., 2002.

    Google Scholar 

  • Sel’dimirova, O.A., Formation of polyembryoids of wheat anthers in vitro, Fiziol. Biokhim. Kul’t. Rast., 2009, vol. 41, no. 6, pp. 531–538.

    Google Scholar 

  • Sel’dimirova, O.A. and Kruglova, N.N., Development of polyembryoids in vitro as a stage of biotechnological cloning of wheat, Izv. Ufim. Nauchn. Tsentra, Ross. Akad. Nauk, 2014, no. 2 (in press).

    Google Scholar 

  • Sel’dimirova, O.A. and Titova, G.E., Complex approach to investigation of embryogenesis of wheat anthers in vitro, Agrar. Ross., 2009, special issue, p. 114.

    Google Scholar 

  • Shariatpanahi, M.E., Bal, U., Heberle-Bors, E., et al., Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis, Physiol. Plant., 2006, vol. 127, no. 4, pp. 519–534.

    CAS  Google Scholar 

  • Satarova, T.N., Cherchel’, V.Yu., and Cherenkov, A.V., Kukuruza: biotekhnologicheskie i selektsionnye aspekty gaploidii (Biotechnological and Selection Aspects of Haploidy of Maize), Dnepropetrovsk: Novaya Ideologiya, 2013.

    Google Scholar 

  • Sidhu, P.K. and Davis, P.A., Regeneration of fertile green plants from oat isolated microspore culture, Plant Cell Rep., 2009, vol. 28, no. 4, pp. 571–577.

    CAS  PubMed  Google Scholar 

  • Soriano, M., Li, H., and Boutilier, K., Microspore embryogenesis: establishment of embryo identity and pattern in culture, Plant Reprod., 2013, vol. 206, no. 3, pp. 181–196.

    Google Scholar 

  • Stasolla, C., Glutathione redox regulation of in vitro embryogenesis, Plant Physiol. Biochem., 2010, vol. 48, no. 5, pp. 319–327.

    CAS  PubMed  Google Scholar 

  • Stephenson, T.J., McIntyre, L., Collet, C., et al., Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum, Plant Mol. Biol., 2007, vol. 65, nos. 1–2, pp. 77–92.

    CAS  PubMed  Google Scholar 

  • Tang, X., Liu, Y., He, Y., et al., Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical-basal axis of the embryo, J. Exp. Bot., 2013, vol. 64, no. 1, pp. 215–228.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Testillano, P.S., Raminez, C., Domenech, J., et al., Young microspore-derived maize embryos show two domains with defined features also present in zygotic embryogenesis, Int. J. Dev. Biol. Plant., 2002, vol. 46, no. 8, pp. 1035–1047.

    CAS  Google Scholar 

  • Testillano, P.S. and Risueno, M.C., Tracking gene and protein expression during microspore embryogenesis by confocal laser scanning microscopy, in Advanced in Haploid Production in Higher Plants, Touraev, A., Forster, B.P., and Jain, S.M., Eds., Netherlands: Springer-Verlag, 2009, pp. 339–347.

    Google Scholar 

  • Uvakova, L., Takac, T., Boehm, N., et al., Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes, J. Proteomics, 2012, vol. 75, no. 6, pp. 1886–1894.

    Google Scholar 

  • Wang, A., Xia, Q., Xie, W., et al., Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny, Plant J., 2002, vol. 30, no. 6, pp. 613–623.

    CAS  PubMed  Google Scholar 

  • Wrobel, J., Barlow, P.W., Gorka, K., et al., Histology and symplasmic tracer distribution during development of barley androgenic embryos, Planta, 2011, vol. 233, no. 5, pp. 873–881.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Z. and Laux, T., The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis, Sex. Plant Reprod., 2011, vol. 24, no. 2, pp. 161–169.

    CAS  PubMed  Google Scholar 

  • Zhang, S.Z., Liu, X.G., Lin, Y.A., et al., Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture, Plant Cell, Tissue Organ Cult., 2011, vol. 105, no. 1, pp. 29–37.

    CAS  Google Scholar 

  • Zhao, T., Ni, Z., Dai, Y., et al., Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.), Mol. Gen. Genomics, 2006, vol. 276, no. 4, pp. 334–350.

    CAS  Google Scholar 

  • Zur, I., Dubas, E., Golemiec, E., et al., Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.), Plant Cell Rep., 2009, vol. 28, no. 8, pp. 1279–1287.

    CAS  PubMed  Google Scholar 

  • Zur, I., Dubas, E., Krzewska, M., et al., Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (×Triticosecale Wittm.), Plant Cell Tissue Organ Cult., 2014, vol. 116, no. 2, pp. 261–267.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Seldimirova.

Additional information

Original Russian Text © O.A. Seldimirova, N.N. Kruglova, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 5, pp. 476–487.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seldimirova, O.A., Kruglova, N.N. Androclinic embryoidogenesis in vitro in cereals. Biol Bull Rev 5, 156–165 (2015). https://doi.org/10.1134/S2079086415020073

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415020073

Keywords

Navigation