Skip to main content
Log in

Aggressive behavior: Genetic and physiological mechanisms

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The paper presents a review of the literature on the genetic determination of intraspecific aggressive behavior, one of the most complex and universal forms of social behavior in animals on different rungs of the evolutionary ladder. We consider the existing experimental approaches and new opportunities based on recent molecular technologies. The comprehensive approach allows investigating the evolutionary, genetic, and biological roots of aggression and its manifestations under different environmental and social factors, as well as genetic predispositions. The social importance of the problem is noted. The review considers the phenomenology of aggression and mechanisms that stimulate or prevent it. It is supposed that the main social mechanism deterring aggression in a population is the dominance–subordination relationships. Neurobiological determinants of aggression and the role of hereditary factors in controlling aggressive behavior in animals and humans are considered. By the example of neurochemical brain changes in male mice exposed to repeated aggression in daily agonistic intermale interactions, we present the research model “from behavior to the gene.” It is noted in the discussion that the same genes that influence aggressiveness in human were revealed in the experimental studies in animals of different strains, as well as in knockout and transgenic animals. They include genes for transporters supporting serotonin reuptake and enzymes involved in the synthesis and catabolism of serotonin and catecholamines. In conclusion, we consider the prospects of transcriptome studies and problems of the epigenetic regulation of aggressive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, B.S., Kwok, M.C., Trinh, E., Budaghzadeh, S., Hossain, S.M., and Simpson, E.M., Pathological aggression in “fierce” mice corrected by human nuclear receptor 2E1, J. Neurosci., 2005, vol. 25, pp. 6263–6270.

    CAS  PubMed  Google Scholar 

  • Albert, F.W., Shchepina, O., Winter, C., Rompler, H., Teupser, D., Palme, R., Ceglarek, U., Kratzsch, J., Sohr, R., Trut, L.N., Thiery, J., Morgenstern, R., Plyusnina, I.Z., Schoneberg, T., and Paabo, S., Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans, Horm. Behav., 2008, vol. 53, pp. 413–421.

    CAS  PubMed  Google Scholar 

  • Anholt, R.R.H. and Mackay, T.F.C., Genetics of aggression, Ann. Rev. Genet., 2012, vol. 46, pp. 145–164.

    CAS  PubMed  Google Scholar 

  • Annen, Y. and Fujita, O., Intermale aggression in rats selected for emotional reactivity and their reciprocal F1 and F2 hybrids, Aggressive Behav., 1983, vol. 10, pp. 11–19.

    Google Scholar 

  • Archer, J., The influence of testosterone on human aggression, Br. J. Psychol., 1991, vol. 82, pp. 1–28.

    PubMed  Google Scholar 

  • Archer, J., Birring, S.S., and Wu, F.C.W., The association between testosterone and aggression among young men: empirical findings and a meta-analysis, Aggressive Behav, 1998, vol. 24, pp. 411–420.

    CAS  Google Scholar 

  • Archer, T., Oscar-Berman, M., Blum, K., and Gold, M., Neurogenetics and epigenetics in impulsive behaviour: impact on reward circuitry, J. Genet. Syndr. Gene Ther., 2012, vol. 3, no. 3, p. 1000115.

    Google Scholar 

  • Assal, F., Alarcon, M., Solomon, E.C., Masterman, D., Geschwind, D.H., and Cummings, J.L., Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease, Arch. Neurol., 2004, vol. 61, pp. 1249–1253.

    PubMed  Google Scholar 

  • Auboeuf, D. and Vidal, H., The use of the reverse transcriptioncompetitive polymerase chain reaction to investigate the in vivo regulation of gene expression in small tissue samples, Anal. Biochem., 1997, vol. 2, pp. 141–148.

    Google Scholar 

  • Avgustinovich, D.F., Alekseyenko, O.V., Bakshtanovskaya, I.V., Koriakina, L.A., Lipina, T.V., Tenditnik, M.V., Bondar, N.P., Kovalenko, I.L., and Kudryavtseva, N.N., Dynamic changes of brain serotonergic and dopaminergic activities during development of anxious depression: experimental study, Usp. Fiziol. Nauk, 2004, vol. 35, no. 4, pp. 19–40.

    CAS  PubMed  Google Scholar 

  • Aylor, D.L., Valdar, W., Foulds-Mathes, W., Buus, R.J., Verdugo, R.A., et al., Genetic analysis of complex traits in the emerging collaborative cross, Genome Res., 2011, vol. 21, pp. 1213–1222.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azaryan, A.V., Clock, B.J., Rosenberger, J.G., and Cox, B.M., Transient upregulation of mu opioid receptor mRNA levels in nucleus accumbens during chronic cocaine administration, Can. J. Physiol. Pharmacol., 1998, vol. 76, pp. 278–283.

    CAS  PubMed  Google Scholar 

  • Baron, R.A. and Richardson, D.R., Human Aggression, New York: Plenum Press, 1994.

    Google Scholar 

  • Barratt, E.B., Anxiety and impulsiveness: toward a neuropsychological model, in Current Trends in Theory and Research, Spielberger, C.D., Ed., New York: Acad. Press, 1972, pp. 195–222.

    Google Scholar 

  • Beilharz, R.G. and Beilharz, V.C., Observations on fighting behaviour of male mice (Mus musculus L.), Z. Tierpsych., 1975, vol. 339, pp. 126–140.

    Google Scholar 

  • Bell, R. and Hobson, H., Effects of (–)-pindolol and SDZ 216-525 on social and agonistic behavior in mice, Pharmacol. Biochem. Behav., 1993, vol. 46, pp. 873–880.

    CAS  PubMed  Google Scholar 

  • Belyaev, D.K. and Borodin, P.M., The influence of stress on variation and its role in evolution, Biol. Zentbl., 1982, vol. 100, p. 705.

    Google Scholar 

  • Benus, R.F., Bohus, B., Koolhaas, J.M., and van Oortmerssen, G.A., Behavioural differences between artificially selected aggressive and non-aggressive mice: response to apomorphine, Behav. Brain Res., 1991, vol. 43, no. 2, pp. 203–208.

    CAS  PubMed  Google Scholar 

  • Blanchard, D.C. and Blanchard, R.J., What can animal aggression research tell us about human aggression?, Hormones Behav., 2003, vol. 44, no. 3, pp. 171–177.

    Google Scholar 

  • Bondar, N.P., Boyarskikh, U.A., Kovalenko, I.L., Filipenko, M.L., and Kudryavtseva, N.N., Molecular implications of repeated aggression: Th, Dat1, Snca and Bdnf gene expression in the VTA of victorious male mice, PLoS One, 2009, vol. 4, no. 1, p. e4190.

    PubMed Central  PubMed  Google Scholar 

  • Book, A.S., Starzyk, K.B., and Quinsey, V.L., The relationship between testosterone and aggression: a meta-analysis, Aggressive Violent Behav., 2001, vol. 6, pp. 579–599.

    Google Scholar 

  • Boyarskikh, U.A., Bondar, N.P., Filipenko, M.L., and Kudryavtseva, N.N., Down regulation of serotonergic genes expression in the raphe nuclei of midbrain under chronic social defeat stress in male mice, Mol. Neurobiol., 2013, vol. 48, no. 1, pp. 13–21.

    CAS  PubMed  Google Scholar 

  • Brain, P.F., The adaptiveness of house mouse aggression, in House Mouse Aggression. A Model for Understanding the Evolution of Social Behavior, Brain, P.F., Mainardi, D., and Parmigiani, S., Eds., Harwood Acad. Publ., 1979, pp. 1–21.

    Google Scholar 

  • Brain, P.F. and Nowell, N.W., Some behavioral and endocrine relationships in adult male laboratory mice subjected to open and aggression tests, Physiol. Behav., 1969, vol. 4, pp. 945–947.

    Google Scholar 

  • Brunner, H.G., Nelen, M., Breakefield, X.O., Ropers, H.H., and van Oost, B.A., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A, Science, 1993, vol. 1, pp. 578–580.

    Google Scholar 

  • Buettner, A. and Zill, P., Genetics of suicide, Mol. Psychiatry, 2006, vol. 11, pp. 336–351.

    PubMed  Google Scholar 

  • Cairns, R.B., McCombie, D.J., and Hood, K.E., A developmental-genetic analysis of aggressive behavior in mice: behavioral outcomes, J. Comp. Psychol., 1983, vol. 97, pp. 69–89.

    CAS  PubMed  Google Scholar 

  • Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., et al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA, Science, 1995, vol. 1, pp. 1763–1766.

    Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T.E., Mill, J., Martin, J., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, vol. 1, pp. 851–854.

    Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T.E., Taylor, A., Craig, I.W., et al., Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene, Science, 2003, vol. 1, pp. 386–389.

    Google Scholar 

  • Charpentier, J., Analysis and measurement of aggressive behaviour in mice, in Aggressive Behavior, Garattini, S. and Sigg, E.B., Eds., Amsterdam: Excepta Medica, 1969, pp. 86–100.

    Google Scholar 

  • Chattopadhyay, N., Kher, R., and Godbole, M., Inexpensive SDS/phenol method for RNA extraction from tissues, BioTechniques, 1993, vol. 15, pp. 24–26.

    CAS  PubMed  Google Scholar 

  • Chen, T.J.H., Blum, K., Mathews, D., Fisher, L., Schnautz, N., Braverman, E.R., Schoolfield, J., Downs, B.W., and Comings, D.E., Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatric genetic research of complex behavioral disorders, Med. Hypoth., 2005, vol. 65, pp. 703–707.

    CAS  Google Scholar 

  • Chiavegatto, S., Dawson, V.L., Mamounas, L.A., Koliatsos, V.E., Dawson, T.M., and Nelson, R.J., Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 1277–1281.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chu, R., Caron, M.G., and Wetsel, W.C., Aberrant responses in social interaction of dopamine transporter knockout mice, Behav. Brain Res., 2004, vol. 148, pp. 185–198.

    PubMed  Google Scholar 

  • Churchill, G.A., Airey, D.C., Allayee, H., Angel, J.M., Attie, A.D., et al., The collaborative cross, a community resource for the genetic analysis of complex traits, Nature, 2004, vol. 36, pp. 1133–1137.

    CAS  Google Scholar 

  • Ciaranello, R.D., Lipsky, A., and Axelrod, J., Association between fighting behavior and catecholamine biosynthetic enzyme activity in two inbred mouse sublines, Proc. Natl. Acad. Sci. U.S.A., 1974, vol. 71, pp. 3006–3008.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craig, D., Hart, D.J., McCool, K., Mc Ilroy, S.P., and Passmore, A.P., Apolipoprotein E e4 allele influences aggressive behaviour in Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry, 2004a, vol. 75, pp. 1327–1330.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craig, D., Hart, D.J., Carson, R., McIlroy, S.P., and Passmore, A.P., Allelic variation at the a218ctryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer’s disease, Neurosci. Lett., 2004b, vol. 363, pp. 199–202.

    CAS  PubMed  Google Scholar 

  • Craig, I.W. and Halton, K.E., Genetics of human aggressive behavior, Hum. Genet., 2009, vol. 126, pp. 101–113.

    PubMed  Google Scholar 

  • Crespo, J.A., Manzanares, J., Oliva, J.M., Corchero, J., Palomo, T., et al., Extinction of cocaine self-administration produces a differential time-related regulation of proenkephalin gene expression in rat brain, Neuropsychopharmacology, 2001, vol. 25, pp. 185–194.

    CAS  PubMed  Google Scholar 

  • Devoino, L.V., Alperina, E.L., Kudryavtseva, N.N., and Popova, N.K., Immune responses in male mice with aggressive and submissive behavior patterns: strain differences, Brain. Behav. Immun., 1993, vol. 7, pp. 91–96.

    CAS  PubMed  Google Scholar 

  • Dow, H.C., Kreibich, A.S., Kaercher, K.A., Sankoorikal, G.M., Pauley, E.D., et al., Genetic dissection of intermale aggressive behavior in BALB/cJand A/Jmice, Genes Brain Behav., 2011, vol. 10, pp. 57–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drent, P.J., van Oers, K., and van Noordwijk, A.J., Realized heritability of personalities in the great tit (Parus major), Proc. Biol. Sci., 2003, vol. 270, pp. 45–51.

    PubMed Central  PubMed  Google Scholar 

  • Edwards, A.C., Dodge, K.A., Latendresse, S.J., Lansford, J.E., Bates, J.E., et al., MAOA-uVNTR and early physical discipline interact to influence delinquent behavior, J. Child Psychol. Psychiatry, 2010, vol. 51, pp. 679–687.

    PubMed Central  PubMed  Google Scholar 

  • Eldakar, O.T. and Gallup, A.C., The group-level consequences of sexual conflict in multigroup populations, PLoSOne, 2011, vol. 6, p. e26451.

    CAS  Google Scholar 

  • Eleftheriou, B.E., Bailey, D.W., and Denenberg, V.H., Genetic analysis of fighting behavior in mice, Physiol. Behav., 1974, vol. 13, no. 6, pp. 773–777.

    CAS  PubMed  Google Scholar 

  • Fairbanks, L.A., Newman, T.K., Bailey, J.N., Jorgensen, M.J., Breidenthal, S.E., et al., Genetic contributions to social impulsivity and aggressiveness in vervet monkeys, Biol. Psychiatry, 2004, vol. 55, pp. 642–647.

    PubMed  Google Scholar 

  • Ferrari, P.F., Palanza, P., Parmigiani, S., and Rodgers, R.J., Interindividual variability in Swiss male mice: relationship between social factors, aggression and anxiety, Physiol. Behav., 1998, vol. 63, no. 5, pp. 821–827.

    CAS  PubMed  Google Scholar 

  • Filipenko, M.L., Beilina, A.G., Alekseyenko, O.V., Dolgov, V.V., and Kudryavtseva, N.N., Repeated experience of social defeats increases serotonin transporter and monoamine oxidase AmRNA levels in raphe nuclei of male mice, Neurosci. Lett., 2002a, vol. 321, nos. 1/2, pp. 25–28.

    CAS  PubMed  Google Scholar 

  • Filipenko, M.L., Beylina, A.G., Alekseyenko, O.V., Timofeeva, O.A., Avgustinovich, D.F., and Kudryavtseva, N.N., Association between the brain COMT gene expression and aggressive experience in daily agonistic confrontations in male mice, in Stress: Neural, Endocrine and Molecular Studies, McCarty, R., Aguelera, G., Sabban, E., and Kvetnansky, R., London: Taylor and Francis, 2002b, pp. 157–161.

    Google Scholar 

  • Filipenko, M.L., Alekseyenko, O.V., Beilina, A.G., Kamynina, T.P., and Kudryavtseva, N.N., Increase of tyrosine hydroxylase and dopamine transporter mrna levels in ventral tegmental area of male mice under influence of repeated aggression experience, Mol. Brain Res, 2001a, vol. 96, nos 1/2, pp. 77–81.

    CAS  PubMed  Google Scholar 

  • Filipenko, M.L., Beilina, A.G., Alekseyenko, O.V., and Kudryavtseva, N.N., Changes in the expression of catechol-O-methyltransferase gene under the influence of agonistic interactions in male mice, Dokl. Akad. Nauk, 2001b, vol. 377, pp. 411–414.

    CAS  Google Scholar 

  • Filipenko, M.L., Beilina, A.G., Alekseyenko, O.V., Dolgov, V.V., and Kudryavtseva, N.N., Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice, Biokhimiya, 2002, vol. 67, no. 4, pp. 451–455.

    CAS  Google Scholar 

  • van der Flier, W.M., Staekenborg, S., Pijnenburg, Y.A., Gillissen, F., Romkes, R., et al., Apolipoprotein E genotype influences presence and severity of delusions and aggressive behavior in Alzheimer disease, Dement. Geriatr. Cogn. Disord., 2007, vol. 23, pp. 42–46.

    PubMed  Google Scholar 

  • Gammie, S.C. and Nelson, R.J., Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice, J. Neurosci., 1999, vol. 19, pp. 8027–8035.

    CAS  PubMed  Google Scholar 

  • Gammie, S.C., Auger, A.P., Jessen, H.M., Vanzo, R.J., Awad, T.A., and Stevenson, S.A., Altered gene expression in mice selected for high maternal aggression, Genes Brain Behav., 2007, vol. 6, pp. 432–443.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gatewood, J.D., Wills, A., Shetty, S., Xu, J., Arnold, A.P., Burgoyne, P.S., and Rissman, E.F., Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice, J. Neurosci., 2006, vol. 26, pp. 2335–2342.

    CAS  PubMed  Google Scholar 

  • Gogos, J.A., Morgan, M., Luine, V., Santha, M., Ogawa, S., Pfaff, D., and Karayiorgou, M., Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 9991–9996.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldsmith, J.F., Brain, P.F., and Benton, D., Effects of the duration of individual or group housing on behavioural and adrenocortical reactivity in male mice, Physiol. Behav., 1978, vol. 21, no. 5, pp. 757–760.

    CAS  PubMed  Google Scholar 

  • Goloshchapov, A.V., Filipenko, M.L., Bondar, N.P., Kudryavtseva, N.N., and Van Ree, J.M., Decrease of κ-opioid receptor mRNA level in ventral tegmental area of male mice after repeated experience of aggression, Mol. Brain Res., 2005, vol. 135, pp. 290–292.

    CAS  PubMed  Google Scholar 

  • Gonda, X., Fountoulakis, K.N., Csukly, G., Bagdy, G., Pap, D., et al., Interaction of 5-HTTLPR genotype and unipolar major depression in the emergence of aggressive/hostile traits, J. Affect. Disord., 2011, vol. 132, pp. 432–437.

    CAS  PubMed  Google Scholar 

  • Guillot, P.V. and Chapouthier, G., Intermale aggression and dark/light preference in ten inbred mouse strains, Behav. Brain Sci., 1996, vol. 77, pp. 211–213.

    CAS  Google Scholar 

  • Hahn, M.E. and Haber, S.B., The inheritance of agonistic behavior in male mice: a diallel analysis, Aggressive Behav., 1982, vol. 8, no. 1, pp. 19–38.

    Google Scholar 

  • Haller, J., Bakos, N., Rodriguiz, R.M., Caron, M.G., Wetsel, W.C., et al., Behavioral responses to social stress in noradrenaline transporter knockout mice: effects on social behavior and depression, Brain Res. Bull., 2002, vol. 58, pp. 279–284.

    CAS  PubMed  Google Scholar 

  • Haller, J. and Kruk, M.R., Normal and abnormal aggression: human disorders and novel laboratory models, Neurosci. Biobehav. Rev., 2006, vol. 30, no. 3, pp. 292–303.

    PubMed  Google Scholar 

  • Hind, R.A., Povedenie zhivotnykh (Animal Behavior, Moscow: Mir, 1975.

    Google Scholar 

  • Hohmann, S., Becker, K., Fellinger, J., Banaschewski, T., Schmidt, M.H., et al., Evidence for epistasis between the 5-HTTLPRand the dopamine D4 receptor polymorphisms in externalizing behavior among 15-yearolds, J. Neural Transm., 2009, vol. 16, pp. 1621–1629.

    Google Scholar 

  • Hollingworth, P., Hamshere, M.L., Moskvina, V., Dowzell, K., Moore, P.J., et al., Four components describe behavioral symptoms in 1,120 individuals with lateonset Alzheimer’s disease, J. Am. Geriatr. Soc., 2006, vol. 54, pp. 1348–1354.

    PubMed  Google Scholar 

  • Holmes, A., Murphy, D.L., and Crawley, J.N., Reduced aggression in mice lacking the serotonin transporter, Psychopharmacology, 2002, vol. 1, pp. 160–167.

    Google Scholar 

  • Huang, Y.Y., Cate, S.P., Battistuzzi, C., Oquendo, M.A., Brent, D., and Mann, J.J., An association between a functional polymorphism in the monoamine oxidase agene promoter, impulsive traits and early abuse experiences, Neuropsychopharmacology, 2004, vol. 29, pp. 1498–1505.

    CAS  PubMed  Google Scholar 

  • Hudziak, J.J., van Beijsterveldt, C.E., Bartels, M., Rietveld, M.J., Rettew, D.C., et al., Individual differences in aggression: genetic analyses byage, gender, and informant in 3-, 7-, and 10-year-old Dutch twins, Behav. Genet., 2003, vol. 33, pp. 575–589.

    CAS  PubMed  Google Scholar 

  • Isogai, Y., Si, S., Pont-Lezica, L., Tan, T., Kapoor, V., et al., Molecular organization of vomeronasal chemoreception, Nature, 2011, vol. 1, pp. 241–245.

    Google Scholar 

  • Karere, G.M., Kinnally, E.L., Sanchez, J.N., Famula, T.R., Lyons, L.A., and Capitanio, J.P., What is an “adverse” environment? Interactions of rearing experiences and MAOA genotype in rhesus monkeys, Biol. Psychiatry, 2009, vol. 65, pp. 770–777.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler, S., Elliott, G.R., Orenberg, E.K., and Barchas, J.D., A genetic analysis of aggressive behavior in two strains of mice, Behav. Gen., 1977, vol. 7, no. 4, pp. 313–321.

    CAS  Google Scholar 

  • Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., et al., MAOA, maltreatment, and geneenvironment interaction predicting children’s mental health: new evidence and a meta-analysis, Mol. Psychiatry, 2006, vol. 11, pp. 903–913.

    CAS  PubMed  Google Scholar 

  • Kim, D.K., Tolliver, T.J., Huang, S.J., Martin, B.J., Andrews, A.M., et al., Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter, Neuropharmacology, 2005, vol. 49, pp. 798–810.

    CAS  PubMed  Google Scholar 

  • Kinnally, E.L., Huang, Y.Y., Haverly, R., Burke, A.K., Galfalvy, H., et al., Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women, Psychiatr. Genet., 2009, vol. 19, pp. 126–133.

    PubMed Central  PubMed  Google Scholar 

  • Kotler, M., Barak, P., Cohen, H., Averbuch, I.E., Grinshpoon, A., et al., Homicidal behavior in schizophrenia associated with a genetic polymorphism determining low catechol-O-methyltransferase (COMT) activity, Am. J. Med. Genet., 1999, vol. 88, pp. 628–633.

    CAS  PubMed  Google Scholar 

  • Krushinskii, L.V., Formirovanie povedeniya zhivotnykh v norme i patologii (Formation of Animal Behavior in Norm and Pathology), Moscow: MGU, 1960.

    Google Scholar 

  • Kudryavtseva, N.N., The sensory contact model for the study of aggressive and submissive behaviors in male mice, Aggressive Behav, 1991, vol. 17, no. 5, pp. 285–291.

    Google Scholar 

  • Kudryavtseva, N.N., The psychopathology of repeated aggression: a neurobiological aspect, in Perspectives on the Psychology of Aggression, Morgan, J.P., Ed., N.Y.: Nova Science Publ., Inc, 2006, chapter 2, pp. 35–64.

    Google Scholar 

  • Kudryavtseva, N.N., in Sensory Contact Model: Protocol, Control, Applications, Horizons in Neuroscience Research, Costa, A. and Villalba, E., Eds., New York: Nova Sci. Publ. Inc., 2011, vol. 3, chapter 4, pp. 81–100.

    Google Scholar 

  • Kudryavtseva, N.N., Praktika issledovaniya agonisticheskogo povedeniya: Metody, metodologiya, interpretatsii: Monografiya (Practical Research of Agonistic Behavior: Methods, Methodology, and Interpretation. A Monograph), Novosibirsk: Nauka-Tsentr Press, 2012, pp. 1–172.

    Google Scholar 

  • Kudryavtseva, N.N. and Avgustinovich, D.F., Behavioral and physiological markers of experimental depression induced by social conflicts (disc), Aggressive Behav, 1998, vol. 24, pp. 271–286.

    Google Scholar 

  • Kudryavtseva, N.N. and Bakshtanovskaya, I.V., The neurochemical control of aggression and submission, Zh. Vyssh. Nerv. Deiat. im I.P. Pavlova, 1991, vol. 41, no. 5, pp. 459–466.

    CAS  Google Scholar 

  • Kudryavtseva, N.N. and Sitnikov, A.P., Influence of the genotype on the formation of aggressive and submissive behavior in mice, Zh. Vyssh. Nerv. Deiat. im I.P. Pavlova, 1987, vol. 37, no. 2, pp. 287–292.

    Google Scholar 

  • Kudryavtseva, N.N., Filipenko, M.L., Bakshtanovskaia, I.V., Avgustinovich, D.F., Alekseenko, O.V., and Beilina, A.G., Changes in the expression of monoaminergic genes under the influence of repeated experience of agonistic interactions: from behavior to gene, Genetika, 2004, vol. 40, no. 6, pp. 732–748.

    Google Scholar 

  • Kudryavtseva, N.N., Bondar, N.P., Boyarskikh, U.A., and Filipenko, M.L., Snca and Bdnf gene expression in the VTA and raphe nuclei of midbrain in chronically victorious and defeated male mice, PLoSOne, 2010, vol. 5, no. 11, p. e14089.

    Google Scholar 

  • Kulikov, A.V. and Popova, N.K., Study of the genetic control of “spontaneous” aggressiveness in mice, Genetika, 1980, vol. 15, pp. 526–531.

    Google Scholar 

  • Lagerspetz, K.M.J., Aggression and aggressiveness in laboratory mice, in Aggressive Behaviour, Garattini, S. and Sigg, E.B., Eds., Amsterdam: Escerpta Medica, 1969, pp. 77–85.

    Google Scholar 

  • Lagerspetz, K.M.J. and Lagerspetz, K.Y.H., Genetic determination of aggressive behavior, in The Genetics of Behavior, van J.H.F. Abeelen, Ed., 1974, pp. 321–346.

    Google Scholar 

  • LaPlant, Q., Vialou, V., Covington, H.E., 3rd, Dumitriu. D., Feng, J., Warren, B.L., Maze, I., Dietz, D.M., Watts, E.L., Iniguez, S.D., Koo, J.W., Mouzon, E., Renthal, W., Hollis, F., Wang, H., Noonan, M.A., Ren, Y., Eisch, A.J., Bolanos, C.A., Kabbaj, M., Xiao, G., Neve, R.L., Hurd, Y.L., Oosting, R.S., Fan, G., Morrison, J.H., and Nestler, E.J., Dnmt3 a regulates emotional behavior and spine plasticity in the nucleus accumbens, Nat. Neurosci., 2010, vol. 13, no. 9, pp. 1137–1143.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lazary, J., Lazary, A., Gonda, X., Benko, A., Molnar, E., et al., New evidence for the association of the serotonin transporter gene (slc6a4) haplotypes, threatening life events, and depressive phenotype, Biol. Psychiatry, 2008, vol. 64, pp. 498–504.

    CAS  PubMed  Google Scholar 

  • Leshner, A.T., Korn, S.J., Mixon, J.F., Rosenthal, C., and Besser, A.K., Effect of corticosterone on submissiveness in mice: some temporal and theoretical considerations, Physiol. Behav., 1980, vol. 24, no. 2, pp. 283–288.

    CAS  PubMed  Google Scholar 

  • Lewejohann, L., Kloke, V., Heiming, R.S., Jansen, F., Kaiser, S., et al., Social status and day-to-day behaviour of male serotonin transporter knockout mice, Behav. Brain Res., 2010, vol. 211, pp. 220–228.

    CAS  PubMed  Google Scholar 

  • Lindenfors, P. and Tullberg, B.S., Evolutionary aspects of aggression: the importance of sexual selection, Adv. Genet., 2011, vol. 75, pp. 7–22.

    PubMed  Google Scholar 

  • Lorenz, K., On Aggression, New York: Mariner Books, 1974.

    Google Scholar 

  • Malki, K., Pain, O., Du, RietzE., et al., Genes and gene networks implicated in aggression related behaviour, Neurogenetics, 2014, vol. 15, no. 4, pp. 255–266.

    CAS  PubMed  Google Scholar 

  • Manuck, S.B., Flory, J.D., Ferrell, R.E., Mann, J.J., and Muldoon, M.F., A regulatory polymorphism of the monoamine oxidase-agene maybe associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity, Psychiatry Res., 2000, vol. 95, pp. 9–23.

    CAS  PubMed  Google Scholar 

  • Marino, M.D., Bourdelat-Parks, B.N., Cameron, LilesL., and Weinshenker, D., Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice, Behav. Brain Res., 2005, vol. 161, no. 2, pp. 197–203.

    CAS  PubMed  Google Scholar 

  • Mathes, W.F., Aylor, D.L., Miller, D.R., Churchill, G.A., Chesler, E.J., et al., Architecture of energy balance traits in emerging lines of the collaborative cross, Am. J. Physiol. Endocrinol. Metab., 2011, vol. 300, pp. E1124–1134.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maxson, S.C., Didier-Erickson, A., and Ogawa, S., The Y chromosome, social signals, and offense in mice, Behav. Neural. Biol., 1989, vol. 52, pp. 251–259.

    CAS  PubMed  Google Scholar 

  • May, M.E., Lightfoot, D.A., Srour, A., Kowalchuk, R.K., and Kennedy, C.H., Association between serotonin transporter polymorphisms and problem behavior in adult males with intellectual disabilities, Brain Res., 2010, vol. 1, pp. 97–103.

    Google Scholar 

  • McGowan, P.O., Sasaki, A., D’Alessio, A.C., et al., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse, Nat. Neurosci., 2009, vol. 12, pp. 342–348.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miczek, K.A., Fish, E.W., De Bold, J.F., and De Almeida, R.M., Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems, Psychopharmacology, 2002, vol. 1, pp. 434–458.

    Google Scholar 

  • Miczek, K.A., de Almeida, R.M., Kravitz, E.A., Rissman, E.F., de Boer, S.F., and Raine, A., Neurobiology of escalated aggression and violence, J. Neurosci., 2007, vol. 27, no. 44, pp. 11803–11806.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moffitt, T.E., Caspi, A., Rutter, M., and Silva, P.A., Sex differences in antisocial behaviour: conduct disorder, delinquency and violence in the Dunedin Longitudinal Study, Cambridge: Cambridge Univ. Press, 2001.

    Google Scholar 

  • Moyer, K.E., Kinds of aggression and their physiological basis, Commun. Behav. Biol., 1968, vol. 2, pp. 65–87.

    Google Scholar 

  • Mucignat-Caretta, C., The rodent accessory olfactory system, J. Comp. Physiol. A, 2010, vol. 196, pp. 767–777.

    Google Scholar 

  • Murphy, D.L., Fox, M.A., Timpano, K.R., Moya, P., Ren-Patterson, R., et al., How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems, Neuropharmacology, 2008, vol. 55, pp. 932–960.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nedic, G., Nikolac, M., Sviglin, K.N., Muck-Seler, D., Borovecki, F., and Pivac, N., Association study of a functional catechol-O-methyltransferase (COMT) Val108/158Met polymorphism and suicide attempts in patients with alcohol dependence, Int. J. Neuropsychopharmacol., 2011, vol. 14, pp. 377–388.

    CAS  PubMed  Google Scholar 

  • Nelson, R.J., Demas, G.E., Huang, P.L., Fishman, M.C., Dawson, V.L., et al., Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase, Nature, 1995, vol. 1, pp. 383–386.

    Google Scholar 

  • Nelson, R.J. and Chiavegatto, S., Aggression in knockout mice, ILARJ, 2000, vol. 41, no. 3, pp. 153–162.

    CAS  Google Scholar 

  • Nelson, R.J. and Trainor, B.C., Neural mechanisms of aggression, Nat. Rev. Neurosci., 2007, vol. 8, pp. 536–546.

    CAS  PubMed  Google Scholar 

  • Newman, T.K., Syagailo, Y.V., Barr, C.S., Wendland, J.R., Champoux, M., et al., Monoamine oxidase agene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys, Biol. Psychiatry, 2005, vol. 57, pp. 167–172.

    CAS  PubMed  Google Scholar 

  • Nichols, C.D., Garcia, E.E., and Sanders-Bush, E., Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration, Mol. Brain Res., 2003, vol. 111, pp. 182–188.

    CAS  PubMed  Google Scholar 

  • Nikulina, E.M., Hammer, R.P.Jr., Miczek, K.A., and Kream, R.M., Social defeat stress increases expression of mu-opioid receptor mRNA in rat ventral tegmental area, Neuroreport, 1999, vol. 10, no. 14, pp. 3015–3019.

    CAS  PubMed  Google Scholar 

  • Nolan, K.A., Volavka, J., Czobor, P., Cseh, A., Lachman, H., et al., Suicidal behavior in patients with schizophrenia is related to COMT polymorphism, Psychiatr. Genet., 2000, vol. 10, pp. 117–124.

    CAS  PubMed  Google Scholar 

  • Van Oortmerssen, G.A. and Bakker, T.C., Artificial selection for short and long attack latencies in wild Mus musculus domesticus, Behav. Genet., 1981, vol. 11, no. 2, pp. 115–126.

    PubMed  Google Scholar 

  • Packer, C., Collins, D.A., Sindimwo, A., and Goodall, J., Reproductive constraints on aggressive competition in female baboons, Nature, 1995, vol. 1, pp. 60–63.

    Google Scholar 

  • Parmigiani, S., Palanza, P., Rodgers, J., and Ferrari, P.F., Selection, evolution of behavior and animal models of behavioral neuroscience, Neurosci. Biobehav. Rev., 1999, vol. 23, no. 7, pp. 957–970.

    CAS  PubMed  Google Scholar 

  • Parruti, G., Ambrosini, G., Sallese, M., and De Blasi, A., Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2, Biochem. Biophys. Res. Commun., 1993, vol. 190, no. 2, pp. 475–481.

    CAS  PubMed  Google Scholar 

  • Pavlov, K.A., Chistiakov, D.A., and Chekhonin, V.P., Genetic determinants of aggression and impulsivity in humans, J. Appl. Genetics, 2012, vol. 53, pp. 61–82.

    CAS  Google Scholar 

  • Pinsonneault, J.K., Papp, A.C., and Sadee, W., Allelic mRNA expression of X-linked monoamine oxidase A (MAOA) in human brain: dissection of epigenetic and genetic factors, Hum. Mol. Genet., 2006, vol. 15, pp. 2636–2649.

    CAS  PubMed  Google Scholar 

  • Plyusnina, I.Z. and Oskina, I.N., Ontogenesis of behavior and selection for domestication of wild gray rats, in Sovremennie konceptsii evolutsionnoi genetiki (Modern Concepts of Evolutionary Genetics), Novosibirsk, 2000, pp. 341–350.

    Google Scholar 

  • Pliusnina, I.Z. and Solov’eva, M.Ju., Intraspecific intermale aggression in tame and aggressive Norway rats, Zh. Vyssh. Nerv. Deiat. im I.P. Pavlova, 2010, vol. 60, no. 2, pp. 175–183.

    CAS  PubMed  Google Scholar 

  • Plyusnina, I.Z., Oskina, I.N., Tibeikina, M.A., and Popova, N.K., Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human, Behav. Genet., 2008, vol. 39, no. 2, pp. 202–212.

    PubMed  Google Scholar 

  • Popova, N.K., Skrinskaya, Y.A., Amstislavskaya, T.G., Vishnivetskaya, G.B., Seif, I., and de Meier, E., Behavioral characteristics of mice with genetic knockout of monoamine oxidase type A, Neurosci. Behav. Physiol., 2001, vol. 31, pp. 597–602.

    CAS  PubMed  Google Scholar 

  • Popova, N.K., Naumenko, V.S., Plyusnina, I.Z., and Kulikov, A.V., Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats, J. Neurosci. Res., 2005, vol. 80, no. 2, pp. 286–292.

    CAS  PubMed  Google Scholar 

  • Poshivalov, V.P., Eksperimental’naya psikhofarmakologiya agressivnogo povedeniya (Experimental Psychopharmacology of Aggressive Behavior), Leningrad: Nauka, 1986.

    Google Scholar 

  • Pritchard, A.L., Pritchard, C.W., Bentham, P., and Lendon, C.L., Role of serotonin transporter polymorphisms in the behavioural and psychological symptoms in probable Alzheimer disease patients, Dement. Geriatr. Cogn. Disord., 2007, vol. 24, pp. 201–206.

    CAS  PubMed  Google Scholar 

  • Pritchard, A.L., Harris, J., Pritchard, C.W., Coates, J., Haque, S., et al., Role of 5ht2aand 5ht2cpolymorphisms in behavioural and psychological symptoms of Alzheimer’s disease, Neurobiol. Aging, 2008, vol. 29, pp. 341–347.

    CAS  PubMed  Google Scholar 

  • Provencal, N., Suderman, M.J., Guillemin, C., Vitaro, F., Cote, S.M., Hallett, M., Tremblay, R.E., and Szyf, M., Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells, PLoS One, 2014, vol. 9, no. 4, p. e89839.

    PubMed Central  PubMed  Google Scholar 

  • Raab, A., Danzer, R., Michaud, B., Mormede, P., Tagzouti, K., Simon, H., and Le Moal, M., Behavioral, physiological and immunological consequences of social status and aggression in chronically coexisting resident–intruder dyads of male rats, Physiol. Behav., 1986, vol. 36, no. 2, pp. 226–228.

    Google Scholar 

  • Rao, J.S., Rapoport, S.I., and Kim, H.W., Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients, Int. J. Neuropsychopharmacol., 2009, vol. 12, no. 6, pp. 851–860.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roubertoux, P.L. and Carlier, M., Differences between CBA/Hand NZB mice on intermale aggression. II. Maternal effects, Behav. Genet., 1988, vol. 18, no. 2, pp. 175–184.

    CAS  PubMed  Google Scholar 

  • Le Roy, I., Pothion, S., Mortaud, S., Chabert, C., Nicolas, L., et al., Loss of aggression, after transfer onto a C57BL/6Jbackground, in mice carrying a targeted disruption of the neuronal nitric oxide synthase gene, Behav. Genet., 2000, vol. 30, pp. 367–373.

    PubMed  Google Scholar 

  • Saetre, P., Strandberg, E., Sundgren, P.E., Pettersson, U., Jazin, E., and Bergstrom, T.F., The genetic contribution to canine personality, Genes Brain Behav., 2006, vol. 5, pp. 240–248.

    CAS  PubMed  Google Scholar 

  • Sallinen, J., Haapalinna, A., Viitamaa, T., Kobilka, B.K., and Scheinin, M., Adrenergic alpha2c receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice, J. Neurosci., 1998, vol. 18, pp. 3035–3042.

    CAS  PubMed  Google Scholar 

  • Sandnabba, N.K., Effects of selective breeding for high and low aggressiveness and of fighting experience on odor discrimination in mice, Aggressive Behav., 1986, vol. 12, no. 5, pp. 359–366.

    Google Scholar 

  • Sarchiopone, M. and Carli, V., Gene-environment interaction and suicidal behavior, J. Psychiatr. Pract., 2009, vol. 15, pp. 282–288.

    PubMed  Google Scholar 

  • Saudou, F., Amara, D.A., Dierich, A., LeMeur, M., Ramboz, S., et al., Enhanced aggressive behavior in mice lacking 5-HT1B receptor, Science, 1994, vol. 1, pp. 1875–1878.

    Google Scholar 

  • Scholtens, J. and van de Poll, N.E., Behavioral consequences of agonistic experiences in the male S3 (Tryon Maze Dull) rat, Aggressive Behav., 1987, vol. 13, pp. 213–222.

    Google Scholar 

  • Scott, J.P., Agonistic behavior of mice and rats: a review, Am. Zool., 1966, vol. 6, no. 4, pp. 683–701.

    CAS  PubMed  Google Scholar 

  • Scott, J.P., Theoretical issues concerning the origin and causes of fighting, in The Physiology of Aggression and Defeat, Eleftheriou, B.E. and Scott, J.P., Eds., New York: Plenum, 1971, pp. 11–42.

    Google Scholar 

  • Scott, A.L., Bortolato, M., Chen, K., and Shih, J.C., Novel monoamine oxidase a knockout mice with human-like spontaneous mutation, Neuroreport, 2008, vol. 19, pp. 739–743.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selmanoff, M.K., Maxson, S.C., and Ginsburg, B.E., Chromosomal determinants of intermale aggressive behavior in inbred mice, Behav. Genet., 1976, vol. 6, pp. 53–69.

    CAS  PubMed  Google Scholar 

  • Smagin, D.A., Boyarskikh, U.A., Bondar, N.P., Filipenko, M.L., and Kudryavtseva, N.N., Reduction of serotonergic gene expression in the midbrain raphe nuclei under positive fighting experience, Adv. Biosci. Biotechnol.: Special Issue on Gene Expression, 2013, vol. 4, no. 10B, pp. 36–44.

    CAS  Google Scholar 

  • Southwick, C.H. and Clark, L.H., Interstrains differences in aggressive behavior and exploratory activity of inbred mice, Commun. Behav. Biol., 1968, vol. 1, pp. 49–59.

    Google Scholar 

  • Southwick, C.H., Genetic and environmental variables influencing animal aggression, in Animal Aggression: Selected Readings, Southwick, C.H., Ed., New York: Van Nastrand Reinhold, 1970, pp. 213–229.

    Google Scholar 

  • Spangler, R., Ho, A., Zhou, Y., Maggos, C.E., Yuferov, V., and Kreek, M.J., Regulation of kappa opioid receptor mRNA in the rat brain by “binge” pattern cocaine administration and correlation with preprodynorphin mRNA, Brain Res. Mol. Brain Res., 1996, vol. 38, pp. 71–76.

    CAS  PubMed  Google Scholar 

  • Stewart, A.D., Manning, A., and Batty, J., Effects of Y-chromosome variants on male behaviour of the mouse Mus musculus, Genet. Res. (Cambridge), 1980, vol. 35, pp. 261–268.

    CAS  PubMed  Google Scholar 

  • Strous, R.D., Bark, N., Parsia, S.S., Volavka, J., and Lachman, H.M., Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior, Psychiatry Res., 1997, vol. 69, pp. 71–77.

    CAS  PubMed  Google Scholar 

  • Sweet, R.A., Pollock, B.G., Sukonick, D.L., Mulsant, B.H., Rosen, J., Klunk, W.E., Kastango, K.B., DeKosky, S.T., and Ferrell, R.E., The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer disease, Int. Psychogeriatr., 2001, vol. 13, pp. 401–409.

    CAS  PubMed  Google Scholar 

  • Takahashi, A., Quadros, I.M., de Almeida, R.M., and Miczek, K.A., Brain serotonin receptors and transporters: initiation versus termination of escalated aggression, Psychopharmacology, 2011, vol. 1, pp. 183–212.

    Google Scholar 

  • Tenditnik, M.V., Shurlygina, A.V., Mel’nikova, E.V., Kudriavtseva, N.N., and Trufakin, V.A., Effect of chronic psychoemotional stress on the subpopulation spectrum of T-lymphocytes in immunocompetent organs in male mice, Ross. Fiziol. Zh. im I.M. Sechenova, 2004, vol. 90, no. 12, pp. 1522–1529.

    CAS  PubMed  Google Scholar 

  • Tirindelli, R., Dibattista, M., Pifferi, S., and Menini, A., From pheromones to behavior, Physiol. Rev., 2009, vol. 89, pp. 921–956.

    CAS  PubMed  Google Scholar 

  • Tosato, S., Bonetto, C., Di Forti, M., Collier, D., Cristofalo, D., et al., Effect of COMT genotype on aggressive behaviour in a community cohort of schizophrenic patients, Neurosci. Lett., 2011, vol. 495, pp. 17–21.

    CAS  PubMed  Google Scholar 

  • Tsai, S.J., Hong, C.J., and Liou, Y.J., Recent molecular genetic studies and methodological issues in suicide research, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, pp. 809–817.

    CAS  PubMed  Google Scholar 

  • Val’dman, A.V. and Poshivalov, V.P., Farmakologicheskaya regulyatsiya vnutrividovogo povedeniya (Pharmacological Regulation of Intraspecies Behavior), Leningrad: Meditsina, 1984.

    Google Scholar 

  • Veenema, A.H., Sijtsma, B., Koolhaas, J.M., and de Kloet, E.R., The stress response to sensory contact in mice: genotype effect of the stimulus animal, Psychoneuroendocrinology, 2005, vol. 30, no. 6, pp. 550–557.

    PubMed  Google Scholar 

  • Veenema, A.H., Bredewold, R., and Neumann, I.D., Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity, Psychoneuroendocrinology, 2007, vol. 32, pp. 437–450.

    CAS  PubMed  Google Scholar 

  • Walsh, R.N. and Cummins, R.A., The open-field test: a critical review, Physiol. Bull., 1976, vol. 83, no. 3, pp. 482–504.

    CAS  Google Scholar 

  • Weaver, I.C.G., Cervoni, N., Champagne, F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, vol. 7, pp. 847–854.

    CAS  PubMed  Google Scholar 

  • Weder, N., Yang, B.Z., Douglas-Palumberi, H., Massey, J., Krystal, J.H., et al., MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma, Biol. Psychiatry, 2009, vol. 65, pp. 417–424.

    CAS  PubMed  Google Scholar 

  • Wilson, M. and Daly, M., Competitiveness, risk-taking, and violence—the young male syndrome, Ethol. Sociobiol., 1985, vol. 6, pp. 59–73.

    Google Scholar 

  • Wong, H., Anderson, W.D., Cheng, T., and Riabowol, K.T., Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method, Anal. Biochem., 1994, vol. 223, pp. 251–258.

    CAS  PubMed  Google Scholar 

  • Yeh, M.T., Coccaro, E.F., and Jacobson, K.C., Multivariate behavior genetic analyses of aggressive behavior subtypes, Behav. Genet., 2010, vol. 40, pp. 603–617.

    PubMed Central  PubMed  Google Scholar 

  • Young, K.A., Berry, M.L., Mahaffey, C.L., Saionz, J.R., Hawes, N.L., et al., Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent, Behav. Brain Res., 2002a, vol. 132, pp. 145–158.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Young, S.E., Smolen, A., Corley, R.P., Krauter, K.S., Fries, J.C., et al., Dopamine transporter polymorphism associated with externalizing behavior problems in children, Am. J. Med. Genet., 2002b, vol. 114, pp. 144–149.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Orlov.

Additional information

Original Russian Text © N.N. Kudryavtseva, A.L. Markel, Yu.L. Orlov, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/3, pp. 1133–1155.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtseva, N.N., Markel, A.L. & Orlov, Y.L. Aggressive behavior: Genetic and physiological mechanisms. Russ J Genet Appl Res 5, 413–429 (2015). https://doi.org/10.1134/S2079059715040085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715040085

Keywords

Navigation