Skip to main content
Log in

Phenomenological model of crystallization center nucleation in metal melt during welding under the influence of ultrafine refractory components

  • Welding and Related Processes. Welding Materials and Technologies
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Metallography reveals the correlations between the amount, size, and morphology of ultrafine particles in welding materials (flux-cored and composite wires, coated electrodes, and agglomerated fluxes), as well as the processes of formation of exogenous crystallization centers in the welding pool that facilitate the structure modification and promotion of processing and working properties of deposited metal. The phenomenological model of the nucleation on ultrafine exogenous refractory chemical clusters is developed on the basis of the experimental data and on the existing view of the kinetics of fast physicochemical processes in the welding fire point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Sergeev, V.P., Panin, A.V., and Pochivalov, Yu.I., Nanostructuring of surface layers and production of nanostructured coatings as an effective method of strengthening modern structural and tool materials, Phys. Met. Metallogr., 2007, vol. 104, no. 6, pp. 627–636.

    Article  Google Scholar 

  2. Ryabtsev, I.A., Kondrat’ev, I.A., Gadzyra, N.F., et al., Influence of ultrafine carbides in the flux-cored wire on the properties of heat-resistant welded metal, Avtom. Svarka, 2009, no. 6, pp. 13–16.

    Google Scholar 

  3. Sokolov, G.N., Lysak, V.I., Troshkov, A.S., et al., Modifying of weld metal by nanosized tungsten carbides, Fiz. Khim. Obrab. Mater., 2009, no. 6, pp. 41–47.

    Google Scholar 

  4. Eremin, E.N., The use of nanoparticles of refractory compounds to improve the quality of welded joints of superalloys, Omsk. Nauch. Vestn., 2009, no. 3, pp. 63–67.

    Google Scholar 

  5. Golovin, E.D., Bataev, A.A., Cherepanov, A.N., and Bolotova, L.K., Application of nanopowders of refractory compounds in the laser welding of carbon steels, Ross. Nanotekhnol., 2009, vol. 2, nos. 3–4, pp. 35–57.

    Google Scholar 

  6. Hou, Q.V., Huang, Z., and Wang, J.N., Influence of nano-Al2O3 particles on the microstructure and wear resistance of the nickel-based alloy coating deposited by plasma transferred arc overlay welding, Surf. Coat. Technol., 2011, vol. 206, nos. 8–9, pp. 2806–2812.

    Article  Google Scholar 

  7. Artemyev, A.A., Sokolov, G.N., and Lysak, V.I., Effect of microparticles of titanium diboride and nanoparticles of titanium carbonitride on the structure and properties of deposited metal, Met. Sci. Heat Treat., 2012, vol. 53, no. 11, pp. 603–607.

    Article  Google Scholar 

  8. Smirnov, A.N., Knyaz’kov, V.L., Radchenko, M.V., et al., Influence of nano-dispersed particles of Al2O3 on the structural-phase state of coating systems Ni–Cr–B–Si/WC obtained by plasma-powder surfacing, Svarka Diagn., 2012, no. 5, pp. 32–37.

    Google Scholar 

  9. Kobernik, N.V., Chernyshov, G.G., Gvozdev, P.P., et al., Antifriction properties of the coatings obtained by plasma welding of babbitt with carbon nanotubes, Svarka Diagn., 2013, no. 3, pp. 27–31.

    Google Scholar 

  10. Sokolov, G.N., Zorin, I.V., Artem’ev, A.A., Litvinenko-Ar’kov, V.B., Dubtsov, Yu.N., Lysak, V.I., Kharlamov, V.O., Samokhin, A.V., and Tsvetkov, Yu.V., Structure formation and properties of weld alloys with addition of refractory compound nanoparticles, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 3, pp. 240–248.

    Article  Google Scholar 

  11. Zhilyaev, V.A., Fedorenko, V.V., and Shveikin, G.P., The mechanism of forming of the coaxial structure in alloys based on carbide and titanium carbide, Tr. V mezhd. konf. po poroshkovoi metallurgii v Chekhoslovatskoi Sotsialisticheksoi Respublike (Proc. V Int. Conf. on Powder Metallurgy in Czechoslovakia Social Republic), Gottwaldov, 1978, vol. 2, pp. 189–200.

    CAS  Google Scholar 

  12. Mal’tsev, M.V., Modifitsirovanie struktury metallov i splavov (Modification of the Structure of Metals and Alloys), Moscow: Metallurgiya, 1964.

    Google Scholar 

  13. Rebinder, P.A., Izbrannye trudy. Kniga 2. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika (Selected Research Works, Book 2: Surface Processes in Dispersed Systems. Physical-Chemical Mechanics), Moscow: Nauka, 1979.

    Google Scholar 

  14. Saburov, V.P., Eremin, E.N., Cherepanov, A.N., et al., Modifitsirovanie stalei i splavov dispersnymi inokulyatami (Modification of Steels and Alloys by Dispersed Inoculators), Omsk: Omsk. Gos. Tekh. Univ., 2002.

    Google Scholar 

  15. Sokolov, G.N., Lysak, V.I., Zorin, I.V., Artem’ev, A.A., Dubtsov, Yu.N., and Troshkov, A.S., Effect of ultrafine components on welded joint metal properties for metal structure operation at negative temperatures, Chem. Petrol. Eng., 2015, vol. 51, no. 3, pp. 286–290.

    Article  CAS  Google Scholar 

  16. Erokhin, A.A., Osnovy svarki plavleniem. Fiziko-khimicheskie zakonomernosti (Fundamentals of Fusion Welding: Physical-Chemical Principles), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  17. Grigorov, I.G. and Zainulin, Yu.G., Dependence of melting temperature of nanodispersed titanium carbonitride from particle radius, Perspekt. Mater., 2007, no. 6, pp. 60–63.

    Google Scholar 

  18. Zhukhovitskii, A.A., Belashchenko, D.K., and Bekshtein, B.S., Fiziko-khimicheskie osnovy metallurgicheskikh protsessov (Physical-Chemical Principles of Metallurgical Processes), Moscow: Metallurgiya, 1973.

    Google Scholar 

  19. Woods, R. and Milner, D., Motion in the weld pool in arc welding, Weld. J., 1971, no. 4, pp. 163–173.

    Google Scholar 

  20. Erygin, V.I., Analysis of melt movement rate in the rear of the bath during welding by consumable electrode, Svarochnoe Proizvod., 1980, no. 3, pp. 3–5.

    Google Scholar 

  21. Stolbov, V.I., Svarochnaya vanna: monografiya (Welding Bath: Monograph), Tolyatti: Toliat. Gos. Univ., 2007.

    Google Scholar 

  22. Shneerson, V.Ya., The formation of the layered structure of the weld metal during welding fusion, Svarka Diagn., 2013, no. 4, pp. 16–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Sokolov.

Additional information

Original Russian Text © G.N. Sokolov, V.I. Lysak, I.V. Zorin, A.A. Artemyev, Yu.N. Dubtsov, V.O. Kharlamov, A.A. Antonov, 2015, published in Voprosy Materialovedeniya, 2015, No. 4(84), pp. 159–168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, G.N., Lysak, V.I., Zorin, I.V. et al. Phenomenological model of crystallization center nucleation in metal melt during welding under the influence of ultrafine refractory components. Inorg. Mater. Appl. Res. 7, 884–891 (2016). https://doi.org/10.1134/S2075113316060204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316060204

Keywords

Navigation