Skip to main content
Log in

Estimation of the protective ability of chromium coatings deposited from sulfate and methanesulfonate electrolytes based on Cr(III)

  • Investigation Methods for Physicochemical Systems
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Voltammetric and impedance techniques are used to determine the protective ability of chromium coatings deposited on a steel substrate from sulfate and methanesulfonate electrolytes based on trivalent chromium. It is found that chromium deposits obtained from methanesulfonate electrolyte have lower porosity and higher protective ability as compared with deposits from sulfate electrolyte. It is shown that, when the thickness of chromium coatings reaches 15 μm, there are no through pores in deposits for both electrolytes and, thus, the maximum degree of protection of the steel support is achieved in an aggressive medium. An equivalent circuit correctly modeling the corrosion-electrochemical behavior of the studied system is proposed on the basis of data of electrochemical impedance spectroscopy, and the values of its parameters are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solodkova, L.N. and Kudryavtsev, V.N., Elektroliticheskoe khromirovanie (Electrolytic Chromium Plating), Moscow: Globus, 2007.

    Google Scholar 

  2. Song, Y.B. and Chin, D.-T., Electrochim. Acta, 2002, vol. 48, no. 4, p. 349.

    Article  Google Scholar 

  3. Baral, A. and Engelken, R., J. Electrochem. Soc., 2005, vol. 152, p. C504.

    Article  Google Scholar 

  4. Safonova, O.V., Vykhodtseva, L.N., Polyakov, N.A., Swarbrick, J.C., Sikora, M., Glatzel, P., and Safonov, V.A., Electrochim. Acta, 2010, vol. 56, no. 1, p. 145.

    Article  Google Scholar 

  5. Protsenko, V.S., Danilov, F.I., Gordiienko, V.O., Kwon, S.C., Kim, M., and Lee, J.Y., Thin Solid Films, 2011, vol. 520, no. 1, p. 380.

    Article  Google Scholar 

  6. Danilov, F.I., Protsenko, V.S., Butyrina, T.E., Krasinskii, V.A., Baskevich, A.S., Kwon, S.C., and Lee, J.Y., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, p. 598.

    Article  Google Scholar 

  7. Danilov, F.I., Protsenko, V.S., Gordiienko, V.O., Baskevich, A.S., and Artemchuk, V.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 3, p. 328.

    Article  Google Scholar 

  8. Danilov, F.I., Protsenko, V.S., Gordiienko, V.O., Baskevich, A.S., and Artemchuk, V.V., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, p. 299.

    Article  Google Scholar 

  9. Saravanan, G., Mohan, S., Gnanamuthu, R.M., and Vijayakumar, J., Surf. Eng., 2008, vol. 24, p. 458.

    Article  Google Scholar 

  10. Mohan, S., Vijayakumar, J., and Saravanan, G., Surf. Eng., 2009, vol. 25, p. 570.

    Article  Google Scholar 

  11. Protsenko, V.S., Kityk, A.A., and Danilov, F.I., Surf. Eng. Appl. Electrochem., 2014, vol. 50, No. 5 (in press).

    Google Scholar 

  12. Gernon, M.D., Wu, M., Buszta, T., and Janney, P., Green Chem., 1999, vol. 1, p. 127.

    Article  Google Scholar 

  13. Surviliene, S., Lisowska-Oleksiak, A., and Češuniene, A., Corros. Sci., 2008, vol. 50, p. 338.

    Article  Google Scholar 

  14. Najafi Sayar, P. and Bahrololoom, M.E., J. Appl. Electrochem., 2009, vol. 39, no. 12, p. 2489.

    Article  Google Scholar 

  15. Sziráki, L., Kuzmann, E., Papp, K., Chisholm, C.U., El-Sharif, M.R., and Havancsák, K., Mater. Chem. Phys., 2012, vol. 133, nos. 2–3, p. 1092.

    Article  Google Scholar 

  16. Knyazheva, V.M. and Kolotyrkin, Ya.M., Dokl. Akad. Nauk SSSR, 1957, vol. 114, no. 6, p. 1265.

    Google Scholar 

  17. Shlepakov, M.N. and Sukhotin, A.M., Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 4, p. 917.

    Google Scholar 

  18. Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye elektroanaliticheskie metody (Inversion Electroanalytical Techniques), Moscow: Khimiya, 1988.

    Google Scholar 

  19. Huang, C.-A., Lin, W., and Liao, M.J., Corros. Sci., 2006, vol. 48, p. 460.

    Article  Google Scholar 

  20. Imaz, N., Ostra, M., Vidal, M., Díez, J.A., Sarret, M., and García-Lecina, E., Corros. Sci., 2014, vol. 78, p. 251.

    Article  Google Scholar 

  21. Saravanan, G. and Mohan, S., Corros. Sci., 2009, vol. 51, p. 197.

    Article  Google Scholar 

  22. Rammelt, U. and Reinhard, G., Electrochim. Acta, 1990, vol. 35, no. 6, p. 1045.

    Article  Google Scholar 

  23. Marijan, D. and Gojic-, M., J. Appl. Electrochem., 2002, vol. 32, no. 12, p. 1341.

    Article  Google Scholar 

  24. Kolotyrkin, Ya.M., Lazorenko-Manevich, R.M., and Sokolova, L.A., J. Electroanal. Chem. Interfacial Electrochem., 1987, vol. 228, nos. 1–2, p. 301.

    Article  Google Scholar 

  25. Demin, A.A., Nechaev, E.A., and Danilov, F.I., Elektrokhimiya, 1987, vol. 23, no. 2, p. 262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Danilov.

Additional information

Original Russian Text © F.I. Danilov, V.S. Protsenko, A.A. Kityk, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 5, pp. 553–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, F.I., Protsenko, V.S. & Kityk, A.A. Estimation of the protective ability of chromium coatings deposited from sulfate and methanesulfonate electrolytes based on Cr(III). Prot Met Phys Chem Surf 50, 672–678 (2014). https://doi.org/10.1134/S2070205114050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114050074

Keywords

Navigation