Skip to main content
Log in

Liquid-phase synthesis of methanol using industrial copper-zinc catalyst

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The industrial copper-zinc catalyst MEGAMAX®-phase synthesis of methanol was tested under the conditions of a liquid-phase process while varying the pressure (0.5–7.0 MPa) and the gas mixture flow rate (40–400 mLN/min). The catalyst was shown to have high activity and selectivity in the synthesis of methanol. The best result (730 g(methanol)/kg(cat) h−1 and selectivity 99.2%) was obtained under reaction conditions of 2.0 MPa, 240°C, H2: CO: CO2: N2 = 70.5: 17.9: 6.5: 5.1, and reaction time 3 h. The concentration of methane by-product increased at gas mixture pressures over 3.0 MPa, lowering the selectivity of the process with respect to methanol. Trace amounts of ethane and water were found in addition to methane. Dimethyl ether, a typical by-product of methanol synthesis, was missing from the vapor-gas mixture over the range of pressures. The results from this study indicate that the MEGAMAX® can be used in the liquid-phase synthesis of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, B. and Fujimoto, K., Appl. Catal., A, 2008, vol. 346, pp. 174–178.

    Article  CAS  Google Scholar 

  2. Farsi, M. and Jahanmiri, A., Ind. Eng. Chem. Res., 2012, vol. 18, pp. 1088–1095.

    Article  CAS  Google Scholar 

  3. van der Laan, G.P., Beenackers, A.A.C.M., Ding, B., and Strikwerda, J.C., Catal. Today, 1999, vol. 48, pp. 93–100.

    Article  Google Scholar 

  4. Lee, S. and Sardesai, A., Top. Catal., 2005, vol. 32, pp. 197–207.

    Article  CAS  Google Scholar 

  5. Quinn, R., Dahl, T.A., and Toseland, B.A., Appl. Catal., A, 2004, vol. 272, pp. 61–68

    Article  CAS  Google Scholar 

  6. Karavaev, M.M., Leonov, V.E., Popov, I.G., and Shepelev, E.T., Tekhnologiya sinteticheskogo metanola (Technology of Synthetic Methanol), Moscow: Khimiya, 1984.

    Google Scholar 

  7. Rozovskii, A.Ya. and Lin, G.E., Teoreticheskie osnovy protsessa sinteza metanola (Theoretical Principles of Methanol Synthesis), Moscow: Khimiya, 1990.

    Google Scholar 

  8. Schimpf, S., Rittermeier, A., Zhang, X., Li, Z.-A., Spasova, M., van den Berg, M.W.E., Farle, M., Wang, Y., Fischer, R.A., and Muhler, M., Chem-CatChem, 2010, vol. 2, pp. 214–222.

    CAS  Google Scholar 

  9. Zhang, X., Zhong, L., Guo, Q., Fan, H., Zheng, H., and Xie, K., Fuel, 2010, vol. 89, pp. 1348–1352.

    Article  CAS  Google Scholar 

  10. Mabuse, H., Hagihara, K., Watanabe, T., and Saito, M., Energy Convers. Manage., 1997, vol. 38, pp. 437–442.

    Article  Google Scholar 

  11. Hagihara, K., Mabuse, H., Watanabe, T., and Saito, M., Catal. Today, 1997, vol. 36, pp. 33–37.

    Article  CAS  Google Scholar 

  12. Bochkarev, V.V., Optimizatsiya tekhnologicheskikh protsessov organicheskogo sinteza (Optimization of Organic Synthesis Processes), Tomsk: Tomsk Polytechn. Univ., 2010.

    Google Scholar 

  13. van der Laan, G.P., Beenackers, A.A.C.M., Ding, B., and Strikwerda, J.C., Catal. Today, 1999, vol. 48, pp. 93–100.

    Article  Google Scholar 

  14. Matsuda, T., Shizuta, M., Yoshizawa, J., and Kikuchi, E., Appl. Catal., A, 1995, vol. 125, pp. 293–302.

    Article  CAS  Google Scholar 

  15. Liawa, B.J. and Chenb, Y.Z., Appl. Catal., A, 2001, vol. 206, pp. 245–256.

    Article  Google Scholar 

  16. Setinc, M. and Levec, J., Chem. Eng. Sci., 1999, vol. 54, pp. 3577–3586.

    Article  CAS  Google Scholar 

  17. Hu, L., Wang, X., Li, X., Yu, G., Wang, F., and Yu, Z., Chem. Eng. Process., 2007, vol. 46, pp. 905–909.

    Article  CAS  Google Scholar 

  18. Barrandeguy, J., Chiavassa, D.L., Collins, S.E., Bonivardi, A.L., and Baltanás, M.A., J. Catal., 2002, vol. 211, pp. 252–264.

    Article  Google Scholar 

  19. Collins, S.E., Delgado, J.J., Mira, C., Calvino, J.J., Bernal, S., Chiavassa, D.L., Baltanas, M.A., and Bonivardi, A.L., J. Catal. 2012, vol. 292, pp. 90–98.

    Article  CAS  Google Scholar 

  20. Collins, S.E., Baltanás, M.A., and Bonivard, A.L., J. Catal., 2004, vol. 226, pp. 410–421.

    Article  CAS  Google Scholar 

  21. Ali, S.H. and Goodwin, J.G., J. Catal., 1997, vol. 171, pp. 339–344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bykov.

Additional information

Original Russian Text © A.V. Bykov, M.A. Rubin, M.G. Sul’man, E.M. Sul’man, 2014, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.V., Rubin, M.A., Sul’man, M.G. et al. Liquid-phase synthesis of methanol using industrial copper-zinc catalyst. Catal. Ind. 6, 143–149 (2014). https://doi.org/10.1134/S2070050414020020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050414020020

Keywords

Navigation