Skip to main content
Log in

On stochastic generation of ultrametrics in high-dimensional Euclidean spaces

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

We present a proof of the theorem which states that a matrix of Euclidean distances on a set of specially distributed random points in the n-dimensional Euclidean space R n converges in probability to an ultrametric matrix as n → ∞. Values of the elements of an ultrametric distance matrix are completely determined by variances of coordinates of random points. Also we present a probabilistic algorithm for generation of finite ultrametric structures of any topology in high-dimensional Euclidean space. Validity of the algorithm is demonstrated by explicit calculations of distance matrices and ultrametricity indexes for various dimensions n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Schikhof, Ultrametric Calculus. An Introduction to p-adic Analysis, Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, 1984).

    MATH  Google Scholar 

  2. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Sci. Publishing, Singapore, 1994).

    Book  Google Scholar 

  3. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, London Math. Society Lecture Note Series (2011).

    Google Scholar 

  4. M. V. Dolgopolov and A. P. Zubarev, “Some aspects of m-adic analysis and its applications to m-adic stochastic processes,” p-Adic Numbers Ultrametric Anal. Appl. 3(1), 39–51 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Rammal, G. Toulose and M. A. Virasoro, “Ultrametrisity for Physicists,” Rev. Mod. Phys. 58(3), 765–788 (1986).

    Article  Google Scholar 

  6. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1(1), 1–17 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Mezard, G. Parisi, N. Sourlas, G. Toulouse and M. A. Virasoro, “On the nature of the spin-glass phase,” Phys. Rev. Lett. 52, 1156 (1984).

    Article  Google Scholar 

  8. G. Parisi, “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett. 43, 1754–1756 (1979).

    Article  Google Scholar 

  9. F. J. Dayson, “Existence of a phase-transition in a one-dimentional Ising ferromagnet,” Commun. Math. Phys. 12, 91–107 (1969).

    Article  Google Scholar 

  10. V. Dotsenko, An Introduction to the Spin Glasses and Neural Networks (World Sci., Singapore, 1994).

    MATH  Google Scholar 

  11. H. Frauenfelder, “The connection between low-temperature kinetics and life,” in Protein Structure, Molecular and Electronic Reactivity, pp. 245–261 (Springer, NY, 1987).

    Chapter  Google Scholar 

  12. H. Frauenfelder, “Complexity in proteins,” Nature Struct. Biol. 2, 821–823 (1995).

    Article  Google Scholar 

  13. A. T. Ogielski and D. L. Stein, “Dynamics on ultrametric spaces,” Phys. Rev. Lett. 55, 1634–1637 (1985).

    Article  MathSciNet  Google Scholar 

  14. O. K. Becker and M. Karplus, “The topology of multidimentional protein energy surfaces: theory and application to peptide structure and kinetics,” J. Chem. Phys. 106, 1495–1517 (1997).

    Article  Google Scholar 

  15. V. A. Avetisov, A. Kh. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Physics A 32, 8785–8791 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. A Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusionh constrained by hierarchical energy landscapes,” J. Phys. A:Math. Gen. 35, 177–189 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. V. A Avetisov, A. Kh. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen. 36, 4239–4246 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. V. A Avetisov and A. Kh. Bikulov, “Protein ultrametricity and spectral diffusion in deeply frozen proteins,” Biophys. Rev. Lett. 3, 387–396 (2008).

    Article  Google Scholar 

  19. V. A Avetisov, A. Kh. Bikulov and A. P. Zubarev, “First passage time distribution and number of returns for ultrametric random walk,” J. Phys. A: Math. Theor. 42, 85005–85021 (2009).

    Article  MathSciNet  Google Scholar 

  20. D. Sornette and A. Johansen, “A hierarchical model of financial crashes,” Physica A 261, 581–598 (1998).

    Article  MathSciNet  Google Scholar 

  21. R. N. Mantenga and H. E Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  22. A. Kh. Bikulov, A. P. Zubarev and L. V. Kaidalova, “Hierarchic dynamic model of financial market near crash points and p-adic mathematical analysis,” Proc. Samara State Tech. Univ. 42, 135–141 (2006) [in Russian].

    Google Scholar 

  23. V. T. Volov, “Fractal-cluster theory and thermodynamic principles of the control and analysis for the self-organizing systems,” [arXiv:1309.1415].

  24. V. T. Volov and A. P. Zubarev, “Ultrametric dynamics for the closed fractal-cluster resource models,” [arXiv:1309.4116].

  25. P. Hall, J. S. Marron and A. Neeman, “Geometric representation of high dimension low sample size data,” J. Royal Stat. Soc. B 67, 427–444 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Murtagh, “From data to the physics using ultrametrics: new results in high dimensional data analysis,” Proc. 2nd Intern. Conf. on p-Adic Mathematical Physics, AIP Conf. Proceedings 826, 151–161 (2006).

    Article  MathSciNet  Google Scholar 

  27. R. Durrett, Probability. Theory and Examples (Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991).

    MATH  Google Scholar 

  28. P. Billingslety, Probability and Measure (Wiley, New York, 1979).

    Google Scholar 

  29. A. N. Shiryaev, Probability, Graduate Texts in Math. 95 (Springer-Verlag, New York, 1996).

    Google Scholar 

  30. E. E. Slutsky, “Uber Stochastische Asymptoten und Grenzwerte,” Metron 5, 1–90.

  31. P. Billingsley, Convergence of Probability Measures (John Wiley & Sons, Inc., NY, 1999).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zubarev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, A.P. On stochastic generation of ultrametrics in high-dimensional Euclidean spaces. P-Adic Num Ultrametr Anal Appl 6, 155–165 (2014). https://doi.org/10.1134/S2070046614020046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046614020046

Key words

Navigation