Skip to main content
Log in

Production of nano-bentonite and the study of its effect on mutagenesis in bacteria Salmonella typhimurium

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The production of nano-bentonite and its effects on mutation process in the strains of Salmonella typhimurium are studied. It is revealed that nano-bentonite particles essentially differ from bentonite particles in structure, size, and shape. Bentonite particles are cone-shaped and 0.3 to 1.0 μm in size, whereas nanobentonite nanoparticles are oval-shaped and 25 to 95 μm in size. Single particles (less than 10.0%) are irregular polyhedra and 0.6 μm in size. The structure of bentonite consists of separate fragments of constituent minerals composed of packages–lamelee 0.6 μm in size cemented with an amorphous mass. An amorphous mass containing single micrometer-sized packages–lamelee is observed in the structure of the nano-bentonite. It is determined that nano-bentonite does not possess mutagenic activity on microorganisms. The study of antimutagenic potential of nano-bentonite reveals that it possesses a moderate inhibitory effect on mutagenesis caused by mitomycin C, 2,4-dinitrophenylhydrazine, and ethyl methanesulphonate, but does not inhibit genotoxic potential of hydrogen peroxide. The results demonstrate that nano-bentonite is nongenotoxic and can be used for the development of next-generation safe nanotechnological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Karkishchenko, “Nanosafety: new approaches to risk assessment and toxicity of nanomaterials,” Biomeditsina, No. 1, 5–27 (2009).

    Google Scholar 

  2. N. V. Sayapina, A. A. Sergievich, T. A. Batalova, et al., “Ecological and toxicological danger of carbon nanotubes: review of russian publications,” Izv. Samar. Nauch. Tsentra RAN 16, 949–953 (2014).

    Google Scholar 

  3. D. V. Onishchenko, V. P. Reva, V. G. Kuryavyi, and B. A. Voronov, “Pepper and tomato seeds sprouting with the use of multi-walled carbon nanotubes,” Dokl. Ross. Akad. Sel’skokhoz. Nauk, Nos. 1–2, 37–40 (2015).

    Google Scholar 

  4. E. K. Es’kov, G. I. Churilov, and S. D. Polishchuk, “Ecological and biological effect of nanopowders on rape,” Vestn. Ross. Agrarn. Zaoch. Univ. 19 (14), 59–62 (2013).

    Google Scholar 

  5. G. I. Churilov, “Action of nanocrystal metals on ecological and biological state of the soil and accumulation of biologically active compounds in plants,” Vestn. Ross. Univ. Druzhby Narodov, Ser.: Ekol. Bezopasn. Zhiznedeyat., No. 1, 18–23 (2010).

    Google Scholar 

  6. A. Manuja, K. Balvinder, and R. K. Singh, “Nanotechnology developments: opportunities for animal health and production,” Nanotechnol. Dev. 2, 17–25 (2012).

    Article  Google Scholar 

  7. M. I. Weibel, J. M. Badano, and I. Rintoul, “Technological evolution of hormone delivery systems for estrous synchronization in cattle,” Int. J. Livest. Res. 4, 20–40 (2014).

    Article  Google Scholar 

  8. L. P. Silva, “Potential practical implications of nanotechnology in animal reproductive biotechnologies,” Anim. Reprod. 11, 278–280 (2014).

    Google Scholar 

  9. D. Lin, X. Tian, F. Wu, and B. Xing, “Fate and transport of engineered nanomaterials in the environment,” J. Environ. Qual. 39, 1896–1908 (2010).

    Article  Google Scholar 

  10. J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, et al., “Nanomaterials and the environment: a review for the biennium 2008–2010,” Hazard. Mater. 186, 1–15 (2011).

    Article  Google Scholar 

  11. M. A. Maurer-Jones, I. L. Gunsolus, C. J. Murphy, and C. L. Haynes, “Toxicity of engineered nanoparticles in the environment,” Anal. Chem. 85 (6), 3036–3049 (2013).

    Article  Google Scholar 

  12. A. Kh. Yapparov, I. A. Degtyareva, A. M. Ezhkova, et al., “Remediation of oil-contaminated dark-gray forest soil using a nanosorbent and consortium of indigenous hydrocarbon-oxidizing microorganisms,” Neft. Khoz., No. 1, 115–117 (2016).

    Google Scholar 

  13. T. W. Tzu, T. Tsuritani, and K. Sato, “Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginatebentonite,” J. Environ. Protect., No. 4, 51–55 (2013).

    Article  Google Scholar 

  14. Y. Zhang, D. Wang, B. Liu, et al., “Adsorption of fluoride from aqueous solution using low-cost bentonite (chitosan beads),” Am. J. Anal. Chem., No. 4, 48–53 (2013).

    Article  Google Scholar 

  15. M. Barkat, S. Chegrouche, A. Mellah, et al., “Application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions,” J. Surf. Eng. Mater. Adv. Technol., No. 4, 210–226 (2014).

    Google Scholar 

  16. M. Zohra, J. Rose, and D. Borschneck, “Urban wastewater treatment by adsorption of organic matters on modified bentonite by (iron-aluminum),” J. Encapsulat. Adsorpt. Sci., No. 4, 71–79 (2014).

    Article  Google Scholar 

  17. M. Ueshima, K. Mogi, and K. Tazaki, “Microbes associated with bentonite,” J. Clay Sci. Soc. Jpn. 39 (3), 171–183 (2000).

    Google Scholar 

  18. I. A. Degtyareva, A. Kh. Yapparov, I. A. Yapparov, A. Ya. Khidiyatullina, A. M. Ezhkova, V. O. Ezhkov, D. A. Yapparov, and S. K. Zaripova, “The nutrient medium for the cultivation of nitrogen fixing and phosphate-mobilizing consortiums of microorganisms,” RF Patent No. 2536246 (2014).

    Google Scholar 

  19. I. A. Degtyareva, A. Ya. Khidiyatullina, N. Sh. Khisamutdinov, and N. L. Sharonova, “Evaluation of effect of native and nanosized substances based on them on the growth of collection microorganisms,” in Proceedings of the 8th International Conference on Perspectives of New Fertilizer Forms Using, Plant Protection Products and Growth Regulators in Crop Agrotechnology, Anapa, Moscow, 2014, pp. 97–99.

    Google Scholar 

  20. A. Kh. Yapparov, I. A. Degtyareva, I. A. Yapparov, et al., Producing Technology of Environmentally Friendly Agricultural Products with Bioremediation of Oil-Contaminated Soils by Indigenous Hydrocarbon-Oxidizing Microorganisms and Nanostructured Bentonite (Izd-vo Tsentra Innovats. Tekhnol., Kazan, 2011) [in Russian].

    Google Scholar 

  21. V. O. Ezhkov, A. Kh. Yapparov, E. S. Nefed’ev, et al., “Nanostructural minerals: production, chemical and mineral compositions, structure and physicochemical properties,” Vestn. Kazan. Tekhnol. Univ. 17 (11), 41–45 (2014).

    Google Scholar 

  22. T. Yu. Motina, A. Kh. Yapparov, A. M. Ezhkova, et al., “Comparative estimation of sorption properties of bentotite powder and nanosized betontite in laboratory animal organisms,” Uch. Zap. KGAVM Baumana 223, 121–124 (2015).

    Google Scholar 

  23. A. Ya. Khidiyatullina, “Biorecultivation of oil-contaminated soils using active indigenous microorganismsdestructors and ecological toxicological evaluation of remediation process,” Cand. Sci. (Agricult.) Dissertation (Kazan, 2013).

    Google Scholar 

  24. MU 1.2.2634-10, “Microbiological and molecular genetic evaluation of the nanomaterial impact on the microbiocenosis representatives” (Fed. Tsentr Gigieny Epidemiol. Rospotrebnadzora, Moscow, 2010).

  25. M. D. Sutton, B. T. Smith, V. G. Godoy, and G. C. Walker, “The SOS response: recent insights into umuDCdependent mutagenesis and DNA damage tolerance,” Ann. Rev. Genet. 34, 479–497 (2000).

    Article  Google Scholar 

  26. L. Ptitsyn, G. Horneck, O. Komova, et al., “A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells,” Appl. Environ. Microbiol. 63 (11), 4377–4384 (1997).

    Google Scholar 

  27. Agromineral Resources of Tatarstan and Perspectives of their Using, Ed. by A. V. Yakimov (Fen, Kazan, 2002) [in Russian].

  28. Nanotechnologies. The Alphabet for Everyone, Ed. by Yu. D. Tret’yakov (Fizmatlit, Moscow, 2010) [in Russian].

  29. K. Mortelmans and E. Zeiger, “The ames salmonella microsome mutagenicity assay,” Mutat. Res. 455, 29–60 (2000).

    Article  Google Scholar 

  30. M. G. Evandri, L. Battinelli, C. Daniele, et al., “The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay,” Food Chem. Toxicol. 43 (9), 1381–1387 (2005).

    Article  Google Scholar 

  31. H. A. Alhadrami and G. I. Paton, “Validation of SOS-lux microbial biosensors for mutagenicity assessment: mitomycin-C as a model compound,” Biosensors Bioelectron., No. 4, 142 (2013).

    Google Scholar 

  32. Y. Davidov, R. Rozen, D. R. Smulski, et al., “Improved bacterial SOS promoter: lux fusions for genotoxicity detection,” Mutat. Res., Genet. Toxicol. Environ. Mutagenes. 466, 97–107 (2000).

    Article  Google Scholar 

  33. D. B. Warheit, K. L. Reed, and T. R. Weeb, “Pulmonary toxicity studies in rats with triethoxyoctylsilane (OTES)-coated, pigment-grade titanium dioxide particles: bridging studies to predict inhalation hazard,” Exp. Lung Res. 29 (6), 593–606 (2003).

    Article  Google Scholar 

  34. J. Wang, G. Zhou, C. Chen, et al., “Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration,” Toxicol. Lett. 168, 176–185 (2007).

    Article  Google Scholar 

  35. Q. Liu, Y. Liu, S. Xiang, et al., “Apoptosis and cytotoxicity of oligo(styrene-co-acrylonitrile)-modified montmorillonite,” Appl. Clay Sci., No. 51, 214–219 (2011).

    Article  Google Scholar 

  36. T. Corrales, I. Larraza, F. Catalina, et al., “In vitro biocompatibility and antimicrobial activity of poly (e-caprolactone)/ montmorillonite nanocomposites,” Biomacromolecules, No. 13, 4247–4256 (2012).

    Article  Google Scholar 

  37. Y. Huang, M. Zhang, H. Zou, et al., “Genetic damage and lipid peroxidation in workers occupationally exposed to organic bentonite particles,” Mutat. Res. 751, 40–44 (2013).

    Article  Google Scholar 

  38. A. K. Sharma, B. Schmidt, H. Frandsen, et al., “Genotoxicity of unmodified and organo-modified montmorillonite,” Mutat. Res. 700, 18–25 (2010).

    Article  Google Scholar 

  39. P. R. Li, J. C. Wei, Y. F. Chiu, et al., “Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay,” Appl. Mater. Interfaces, No. 2, 1608–1613 (2010).

    Article  Google Scholar 

  40. A. Biran, S. Yagur-Kroll, R. Pedahzur, et al., “Bacterial genotoxicity bioreporters,” Microb. Biotechnol. 3 (4), 412–427 (2010).

    Article  Google Scholar 

  41. P. Quillardet, P. L. Moreau, H. Ginsburg, et al., “Cell survival, UV reactivation and induction of prophage in Escherichia coli K12 overproducing RecA protein,” Mol. Gen. Genet. 188, 37–43 (1982).

    Article  Google Scholar 

  42. Y. Oda, S. Nakamura, I. Oki, et al., “Evaluation of the new system (umu test) for the detection of environmental mutagens and carcinogens,” Mutat. Res. Environ. Mutagen. Relat. Subj. 147, 219–229 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Degtyareva.

Additional information

Original Russian Text © I.A. Degtyareva, A.M. Ezhkova, A.Kh. Yapparov, I.A. Yapparov, V.O. Ezhkov, E.V. Babynin, A.Ya. Davletshina, T.Yu. Motina, D.A. Yapparov, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyareva, I.A., Ezhkova, A.M., Yapparov, A.K. et al. Production of nano-bentonite and the study of its effect on mutagenesis in bacteria Salmonella typhimurium . Nanotechnol Russia 11, 663–670 (2016). https://doi.org/10.1134/S1995078016050050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016050050

Navigation