Skip to main content
Log in

Carbon nanocontainers for gas storage

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Various types of nanocontainers that can work if there is a change of thermodynamic conditions or a change in the external electrostatic field are presented. Using the molecular dynamics method, the processes of charging, storage, and discharging various nanocontainers with hydrogen and methane are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. J. Li, G. H. Wen, F. W. Wang, J. L. Yu, X. L. Dong, X. X. Zhang, and Z. D. Zhang, “Magnetic Properties of Ni Nanoparticles and Ni(C) Nanocapsules,” J. Mater. Sci. Technol. 17(2), 99–100 (2002).

    Google Scholar 

  2. N. S. Kopelev, V. Chechersky, and A. Nath, “Encapsulation of Iron Carbide in Carbon Nanocapsules,” Chem. Mater. 7, 1419–1421 (1995).

    Article  CAS  Google Scholar 

  3. A. Muller and M. Henry, “Nanocapsule Water-Based Chemistry,” C. R. Chim. 6, 1201–1208 (2003).

    CAS  Google Scholar 

  4. J. W. Kang and H. J. Hwang, “Nano-Memory-Element Applications of Carbon Nanocapsule Encapsulating Potassium Ions: Molecular Dynamics Study,” J. Korean Phys. Soc. 44(4), 879–883 (2004).

    CAS  Google Scholar 

  5. H. Kitahara and T. Oku, “Nanostructures and Electronic Properties of Carbon and Boron Nitride Nanocapsules,” J. Ceram. Process. Res. 5(1), 89–93 (2004).

    Google Scholar 

  6. T. Y. Liu, K. H. Liu, D. M. Liu, S. Y. Chen, and I. W. Chen, “Temperature-Sensitive Nanocapsules for Controlled Drug Release Caused by Magnetically Triggered Structural Disruption,” Adv. Funct. Mater. 18, 1–8 (2008).

    CAS  Google Scholar 

  7. D. W. Kuykendall and S. C. Zimmerman, “A Very Versatile Nanocapsules,” Nat. Nanotechnol. 2, 201–202 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. K. V. Shaitan, Y. V. Tourleigh, D. N. Golik, and M. P. Kirpichnikov, “Computer-Aided Molecular Design of Nanocontainers for Inclusion and Targeted Delivery of Bioactive Compounds,” J. Drug Delivery Sci. Technol. 16(4), 253–258 (2006).

    CAS  Google Scholar 

  9. Y. X. Ren, T. Y. Ng, and K. M. Liew, “State of Hydrogen Molecules Confined in C60 Fullerene and Carbon Nanocapsule Structures,” Carbon 44, 397–406 (2006).

    Article  CAS  Google Scholar 

  10. X. Ye, X. Gu, X. G. Gong, T. K. M. Shing, and Z.-F. Liu, “A Nanocontainer for the Storage of Hydrogen,” Carbon 45, 315–320 (2007).

    Article  CAS  Google Scholar 

  11. R. E. Barajas-Barraza and R. A. Guirado-Lopez, “Clustering of H2 Molecules Encapsulated in Fullerene Structures,” Phys. Rev. B: Condens. Matter 66, 155 426 (2002).

    Google Scholar 

  12. T. Oku, M. Kuno, and I. Narita, “Hydrogen Storage in Boron Nitride Nanomaterials Studied by TG/DTA and Cluster Calculation,” J. Phys. Chem. Solids 65(2–3), 549–552 (2004).

    Article  CAS  ADS  Google Scholar 

  13. T. Oku and M. Kuno, “Synthesis, Argon/Hydrogen Storage, and Magnetic Properties of Boron Nitride Nanotubes and Nanocapsules,” Diamond Relat. Mater. 12(3–7), 840–845 (2003).

    Article  CAS  Google Scholar 

  14. A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, Simulation of the Processes of Accumulation of Hydrogen and Hydrocarbons by Nanostructures (Institute of Computer Science, Scientific and Publishing Center “Regular and Chaotic Dynamics,” Izhevsk, 2008), p. 120 [in Russian].

    Google Scholar 

  15. A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, “Simulation of the Processes of Hydrogen Adsorption on Fullerenes and in Carbon Clusters,” Tyazh. Mashinostr., No. 9, 20–22 (2007).

  16. A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, “Simulation of the Processes of Hydrogen Adsorption by Nanostructures,” Al’ternativ. Energ. Ekol., No. 1, 13–20 (2007).

  17. A. V. Vakhrushev and M. V. Suetin, “Storage of Methane in Nanocapsules,” Al’ternativ. Energ. Ekol. 64(8), 93–98 (2008).

    Google Scholar 

  18. M. V. Suyetin and A. V. Vakhruchev, “Molecular Dynamics Simulation of Methane Storage in Nanocapsules,” in Abstracts of Papers of the 11th Annual NSTI Nanotechnology Conference and Trade Show (Nanotech 2008), Nano Science and Technology Institute (NSTI), Hynes Convention Center, Boston, MA, United States, June 1–5, 2008 (Boston, 2008), p. 26.

  19. A. V. Vakhrushev and M. V. Suetin, “Molecular Dynamics Simulation of Adsorption, Storage, and Desorption of Methane by Controlled Nanocapsules,” in Proceedings of the First Nanotechnology International Forum (RusNanoTech 2008), The Russian Corporation of Nanotechnologies, Moscow, Russia, December 3–5, 2008 (Moscow, 2008), pp. 282–284.

  20. B. W. Smith and D. E. Luzzi, “Carbon Nanotube Encapsulated Fullerenes: A Unique Class of Hybrid Materials,” Chem. Phys. Lett. 321, 169–174 (2000).

    Article  CAS  ADS  Google Scholar 

  21. M. Yoon, S. Berber, and D. Tomanek, “Energetics and Packing of Fullerenes in Nanotube Peapods,” Phys. Rev. B: Condens. Matter 71, 155 406-1–155 406-4 (4 pages) (2005).

    Google Scholar 

  22. D. Tomanek, R. Enbody, K. Young-Kyun, and M. W. Brehob, “Nanocapsules Containing Charged Particles, Their Uses, and Methods of Forming Same,” US Patent No. 6,473,351 (2002).

  23. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable Molecular Dynamics with NAMD,” J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. W. Humphrey, A. Dalke, and K. Schulten, “VMDVisual Molecular Dynamics,” J. Mol. Graphics 14(1), 33–38 (1996).

    Article  CAS  Google Scholar 

  25. A. D. Becke, “A New Mixing of Hartree-Fock and Local Density Functional Theories,” J. Chem. Phys. 98(2), 1372–1377 (1993).

    Article  CAS  ADS  Google Scholar 

  26. A. D. Becke, “Density-Functional Thermochemistry: I. The Effect of the Exchange-Only Gradient Correction,” J. Chem. Phys. 96(3), 2155–2160 (1992).

    Article  CAS  ADS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M.W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98: Program for Quantum-Chemical Calculations (Revision A.1), (Gaussian, Pittsburgh, PA, United States, 1998).

    Google Scholar 

  28. F. Banhart, J. X. Li, and A. V. Krasheninnikov, “Carbon Nanotubes under Electron Irradiation: Stability of the Tubes and Their Action as a Pipe for Atom Transport,” Phys. Rev. B: Condens. Matter 71(24), 241 408-1–241 408-4 (4 pages).

  29. F. Banhart, “Irradiation of Carbon Nanotubes with Focused Electron Beam in the Electron Microscope,” J. Mater. Sci. 41, 4505–4511 (2006).

    Article  CAS  ADS  Google Scholar 

  30. A. V. Krasheninnikov and F. Banhart, “Engineering of Nanostructured Carbon Materials with Electron or Ion Beams,” Nat. Mater. 9, 723–733 (2007).

    Article  ADS  Google Scholar 

  31. V. V. Simonyan, P. Diep, and J. K. Johnson, “Molecular Simulation of Hydrogen Adsorption in Charged Single-Walled Carbon Nanotubes,” J. Chem. Phys. 111, 9778–9783 (1999).

    Article  CAS  ADS  Google Scholar 

  32. A. J. Lachawiec, Jr., G. Qi, and R. T. Yang, “Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement,” Langmuir 21, 11 418–11 424 (2005).

    Article  CAS  Google Scholar 

  33. F. H. Yang, A. J. Lachawiec, Jr., and R. T. Yang, “Adsorption of Spillover Hydrogen Atoms on Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 110, 6236–6234 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. S. S. Han and H. M. Lee, “Adsorption Properties of Hydrogen on (10.0) Single-Walled Carbon Nanotube through Density Functional Theory,” Carbon, 42, 2169–2177 (2004).

    Article  CAS  Google Scholar 

  35. Q. Wang and K. Johnson, “Molecular Simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Slit Pores,” J. Chem. Phys. 110(11), 577–586 (1999).

    Article  CAS  ADS  Google Scholar 

  36. Q. Wang and K. Johnson, “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption,” J. Phys. Chem. B 103, 4809–4813 (1999).

    Article  CAS  Google Scholar 

  37. J.-W. Lee, H.-C. Kang, W.-G. Shim, C. Kim, and H. Moon, “Methane Adsorption on Multi-Walled Carbon Nanotube at (303.15, 313.15, and 323.15) K,” Chem. Eng. Data 51, 963–967 (2006).

    Article  CAS  Google Scholar 

  38. X. Zhang and W. Wang, “Adsorption of Linear Ethane Molecules in Single-Walled Carbon Nanotube Arrays by Molecular Simulation,” Phys. Chem. Chem. Phys. 4, 3048–3054 (2002).

    Article  CAS  Google Scholar 

  39. F. Beuneu, C. I’Huillier, J.-P. Salvetat, J.-M. Bonard, and L. Forr“Modification of Multiwalled Carbon Nanotubes by Electron Irradiation: An ESR Study,” Phys. Rev. B: Condens. Matter 59, 5945–5949 (1999).

    CAS  ADS  Google Scholar 

  40. F. Banhart, “Irradiation Effects in Carbon Nanostructures,” Rep. Prog. Phys. 62, 1181–1221 (1999).

    Article  CAS  ADS  Google Scholar 

  41. P. M. Ajayan, V. Ravikumar, and J. C. Charlier, “Surface Reconstructions and Dimensional Changes in Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 81, 1437 (1998).

    Article  CAS  ADS  Google Scholar 

  42. A. Kis, G. Csanyi, J.-P. Salvetat, T.-N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Forró, “Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes,” Nat. Mater. 3, 153 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, “Shaping Single-Walled Nanotubes with an Electron Beam,” Phys. Rev. B: Condens. Matter 77, 045 410 (2008).

    Google Scholar 

  44. M. Hulman, V. Skakalova, S. Roth, and H. Kuzmany, “Shaping Single-Walled Nanotubes with an Electron Beam,” J. Appl. Phys. 98, 024 311 (2005).

    Article  Google Scholar 

  45. V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, “Gamma-Irradiated and Functionalized Single-Walled Nanotubes,” Diamond Relat. Mater. 13, 296 (2004).

    Article  CAS  Google Scholar 

  46. V. Basiuk, K. Kobayashi, T. Kaneko, Y. Negishi, E. Basiuk, and J. Saniger-Blesa, “Proton Irradiation of Carbon Nanotubes,” Nano Lett. 2, 789 (2002).

    Article  CAS  ADS  Google Scholar 

  47. Y. J. Jung, Y. Homma, R. Vajtai, Y. Kobayashi, T. Ogino, and P. M. Ajayan, “Straightening Suspended Single-Walled Carbon Nanotubes by Ion Irradiation,” Nano Lett. 6, 1109–1113 (2004).

    Article  ADS  Google Scholar 

  48. S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, and P. M. Ajayan, “Irradiation-Induced Magnetism in Carbon Nanostructures,” Phys. Rev. Lett. 95, 097 201 (2005).

    Article  CAS  Google Scholar 

  49. A. Züttel, Ch. Nützenadel, P. Sudan, Ph. Mauron, Ch. Emmenegger, S. Rentsch, L. Schlapbach, A. Weidenkaff, and T. Kiyobayashi, “Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures,” J. Alloys Compd. 330–332, 676–682 (2002).

    Article  Google Scholar 

  50. A. Ansón, M. Benham, J. Jagiello, M. A. Callejas, A. M. Benito, W. K. Maser, A. Züttel, P. Sudan, and M. T. Martáinez, “Hydrogen Adsorption on a Single-Walled Carbon Nanotube Material: A Comparative Study of Three Different Adsorption Techniques,” Nanotechnology 15, 1503–1508 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vakhrushev.

Additional information

Original Russian Text © A.V. Vakhrushev, M.V. Suetin, 2009, published in Rossiiskie nanotekhnologii, 2009, Vol. 4, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakhrushev, A.V., Suetin, M.V. Carbon nanocontainers for gas storage. Nanotechnol Russia 4, 806–815 (2009). https://doi.org/10.1134/S199507800911007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507800911007X

Keywords

Navigation