Skip to main content
Log in

Two-Dimensional Model of the Global Ionospheric Conductor

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

To numerically simulate large-scale electric fields in the magnetosphere and ionosphere, the electrical conductivity problem is solved. The problem is substantially simplified due to the presence of a small parameter, the ratio of the conductivities in directions perpendicular and parallel to the magnetic field. Setting this parameter equal to zero makes magnetic field lines equipotential, so that the original three-dimensional problem reduces to a two-dimensional one. A comparison with the results of calculations performed within the framework of an alternative thin-layer model clearly demonstrates the advantages of using the conductivity anisotropy tensor rather than the smallness of the thickness of the ionosphere for constructing a two-dimensional approximation in a global simulation including the low-latitude ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-I. Akasofu and S. Chapman, Solar-Terrestial Physics (Clarendon, Oxford, UK, 1972; Mir, Moscow, 1974).

    Google Scholar 

  2. A. V. Gurevich, A. L. Krylov, and E. E. Tsedilina, Space Sci. Rev. 191, 59 (1976).

    Google Scholar 

  3. V. V. Denisenko, H. K. Biernat, A. V. Mezentsev, V. A. Shaidurov, and S. S. Zamay, Ann. Geophys. 26, 2111 (2008).

    Article  Google Scholar 

  4. V. M. Mishin, Quite-Time Geomagnetic Variations and Currents in the Magnetosphere (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  5. V. V. Denisenko and S. S. Zamay, Planet. Space Sci. 40, 941 (1992).

    Article  Google Scholar 

  6. V. V. Denisenko, M. Ampferer, E. V. Pomozov, A. V. Kitaev, W. Hausleitner, G. Stangl, and H. K. Biernat, J. Atmosph. Solar-Terr. Phys. 102, 341 (2013).

    Article  Google Scholar 

  7. V. V. Denisenko, Comp. Res. 1 (2), 34 (2013).

    Google Scholar 

  8. V. V. Denisenko, Sib. Math. J. 43, 1055 (2002).

    Article  Google Scholar 

  9. D. R. Weimer, J. Geophys. Res. 104, A185 (1999).

    Article  Google Scholar 

  10. C. A. Cattell, J. Geophys. Res. 101, 27309 (1996).

    Article  Google Scholar 

  11. V. V. Denisenko, S. S. Zamai, and A. V. Kitaev, Geomagn. Aeron. 43, 680 (2003).

    Google Scholar 

  12. J. M. Forbes, Rev. Geophys. 19, 469 (1981).

    Article  Google Scholar 

  13. M. J. Rycroft, G. R. Harrison, K. A. Nicoll, and E. A. Mareev, Space Sci. Rev. 137, 83 (2008).

    Article  Google Scholar 

  14. R. G. Roble and P. B. Hays, J. Geophys. Res. 84, A7247 (1979).

    Article  Google Scholar 

  15. M. D. Kartalev, M. J. Rycroft, M. Fuellekrug, V. O. Papitashvili, and V. I. Keremidarska, J. Atmosph. Solar-Terr. Phys. 68, 457 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Denisenko.

Additional information

Original Russian Text © V.V. Denisenko, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 5, pp. 43–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, V.V. Two-Dimensional Model of the Global Ionospheric Conductor. Russ. J. Phys. Chem. B 12, 532–537 (2018). https://doi.org/10.1134/S1990793118030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118030089

Keywords

Navigation