Skip to main content
Log in

Estimation of the Axial Dispersion Effect on Supercritical Fluid Extraction from Bidisperse Packed Beds

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The general hydrodynamic equations of a mathematical model for supercritical fluid extraction are derived within the framework of the continuum mechanics approach. The shrinking core concept is used to describe the mass transfer on the solid-liquid interface. The complete system of macroscopic differential mass-balance equations is reduced to a one-dimensional approximation and accounts for the axial dispersion effect. Correlation formulas available in the literature are used to calculate the axial dispersion coefficient for the conditions of supercritical CO2 filtration. The effect of axial dispersion on the characteristics of the macroscopic process is analyzed for the typical laboratory-scale extraction conditions in the framework of the suggested model. The numerical simulations demonstrate that the difference between the values of the current mass of accumulated extract calculated in terms of the complete approach, which accounts for the axial dispersion, and the one related to the simplified model (in which the axial dispersion is neglected), is less than 10%. The same comparison is made for the outlet concentrations of the target compounds; the difference reaches 200%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Donelian, L. H. C. Carlson, T. J. Lopes, and R. A. F. Machado, J. Supercrit. Fluids 48, 15 (2009).

    Article  CAS  Google Scholar 

  2. P. K. Rout, S. N. Naik, Y. R. Rao, G. Jadeja, and R. C. Maheshwari, J. Supercrit. Fluids 42, 334 (2007).

    Article  CAS  Google Scholar 

  3. F. Sahena, I. S. M. Zaidul, S. Jinap, A. A. Karim, K. A. Abbas, N. A. N. Norulaini, and A. K. M. Omar, J. Food Eng. 95, 240 (2009).

    Article  CAS  Google Scholar 

  4. A. A. Salamatin, A. G. Egorov, R. N. Maksudov, and V. A. Alyaev, Vestn. Kazan. Tekhnol. Univ. 16 (22), 74 (2013).

    CAS  Google Scholar 

  5. R. N. Maksudov, V. A. Alyaev, A. G. Egorov, and A. B. Mazo, Vestn. Kazan. Tekhnol. Univ. 20, 200 (2011).

    Google Scholar 

  6. A. G. Egorov, A. B. Mazo, R. N. Maksudov, E. N. Tremasov, and V. A. Alyaev, Vestn. Kazan. Tekhnol. Univ. 9, 186 (2010).

    Google Scholar 

  7. A. G. Egorov and A. A. Salamatin, Russ. Math. 59, 48 (2015).

    Article  Google Scholar 

  8. A. G. Egorov and A. A. Salamatin, Chem. Eng. Technol. 38, 1203 (2015).

    Article  CAS  Google Scholar 

  9. A. A. Salamatin and A. G. Egorov, J. Supercrit. Fluids 105, 35 (2015).

    Article  CAS  Google Scholar 

  10. H. Sovova, J. Supercrit. Fluids 66, 73 (2012).

    Article  CAS  Google Scholar 

  11. H. Sovova, Chem. Eng. Sci. 49, 409 (1994).

    Article  CAS  Google Scholar 

  12. R. I. Nigmatulin, Principles of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  13. S. Whitaker, AIChE J. 13, 420 (1967).

    Article  CAS  Google Scholar 

  14. W. G. Gray and S. M. Hassanizadeh, Int. J. Multiphase Flow 15, 81 (1989).

    Article  CAS  Google Scholar 

  15. A. N. Salamatin, Mathematical Models of Disperse Flows (Kazan. Gos. Univ., Kazan, 1987) [in Russian].

    Google Scholar 

  16. T. Funazukuri, Ch. Kong, and S. Kagei, J. Supercrit. Fluids} 13, 169 (1998).

    Article  CAS  Google Scholar 

  17. D. Yu, K. Jackson, and T. C. Harmon, J. Chem. Eng. Sci. 54, 357 (1999).

    Article  CAS  Google Scholar 

  18. M. Suzuki and J. M. Smith, Chem. Eng. J. 3, 256 (1972).

    Article  CAS  Google Scholar 

  19. V. N. Nikolaevskii, K. S. Basniev, A. T. Gorbunov, and G. A. Zotov, Mechanics of Saturated Porous Media (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

  20. A. G. Egorov, A. A. Salamatin, and R. N. Maksudov, Theor. Found. Chem. Eng. 48, 39 (2014).

    Article  CAS  Google Scholar 

  21. H. Sovova and R. P. Stateva, Rev. Chem. Eng. 27, 79 (2011).

    Article  CAS  Google Scholar 

  22. M. Goto, B. C. Roy, and T. Hirose, J. Supercrit. Fluids 8, 128 (1996).

    Article  Google Scholar 

  23. R. N. Maksudov, A. G. Egorov, and A. B. Mazo, Sverkhkrit. Fluidy Teor. Prakt. 3 (2), 20 (2008).

    Google Scholar 

  24. A. G. Egorov, A. B. Mazo, and R. N. Maksudov, Theor. Found. Chem. Eng. 44, 642 (2010).

    Article  CAS  Google Scholar 

  25. J. M. del Valle, J. C. de la Fuente, and E. Uquiche, J. Supercrit. Fluids 67, 60 (2012).

    Article  CAS  Google Scholar 

  26. D. Astrath, F. Lottes, D. T. Vu, W. Arlt, and E. H. Stenby, Adsorption 13, 9 (2007).

    Article  CAS  Google Scholar 

  27. I. Schmidt, M. Minceva, and W. Arlt, J. Chromatogr. A 1225, 141 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. L. Fiori, D. Calcagno, and P. Costa, J. Supercrit. Fluids 41, 31 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Salamatin.

Additional information

Original Russian Text © A.A. Salamatin, 2016, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2016, No. 4, pp. 41–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatin, A.A. Estimation of the Axial Dispersion Effect on Supercritical Fluid Extraction from Bidisperse Packed Beds. Russ. J. Phys. Chem. B 11, 1180–1187 (2017). https://doi.org/10.1134/S1990793117070156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117070156

Keywords

Navigation