Skip to main content
Log in

Impregnation of polymers with 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic probe in sub- and supercritical CO2

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The spin probe method is used to study the impregnation of polycarbonate (PC) based on bisphenol A, polyethylene oxide (PEO), and crosslinked acrylamide–acrylic acid copolymer (PAA) with organic molecules in sub- and supercritical CO2 media. Electron spin resonance (EPR) data show that, at 196 bar and 307 K, 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic spin probe molecules penetrate into the PC and PEO matrices, which are, respectively, in the glassy and elastic states under normal conditions. The degree of impregnation of PAA under these conditions is negligibly small. Estimates of the local concentration of probe molecules show that, in the PEO matrix, TEMPONE is distributed much more uniformly than in the PC matrix. Analysis of the effect of temperature on the shape of the EPR spectra of the radical in the polymer matrix shows that, under the same conditions, the mobility of TEMPONE molecules in the PEO matrix is much higher than in the PC matrix. The results suggest that the spin probe method is promising for studying the characteristics of macro- and micro-processes in polymer–supercritical fluid solvent–organic molecule ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Kemmere and T. Meyer, Supercritical Carbon Dioxide in Polymer Reaction Engineering (Wiley-VCH, Weinheim, 2005).

    Book  Google Scholar 

  2. F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Supercritical Fluides in Polymer Processing (FEN, Kazan, 2000) [in Russian].

    Google Scholar 

  3. Yu. Kuwahara, M. Morita, T. Nagami, A. Tanaka, T. Iwanaga, K. Kumamaru, T. Sawada, M. Sasaki, M. Goto, and M. Sato, Jpn. J. Appl. Phys. 48, 06FF13 (2009).

    Google Scholar 

  4. A. Cooper, J. Adv. Mater. 15, 1049 (2003).

    Article  CAS  Google Scholar 

  5. Y. Kamiya, K. Mizoguchi, K. Terada, Yu. Fujiwara, and J.-S. Wang, Macromolecules 31, 472 (1998).

    Article  CAS  Google Scholar 

  6. S. Jordan and W. Korros, Macromolecules 28, 2228 (1995).

    Article  CAS  Google Scholar 

  7. O. S. Fleming, K. L. A. Chan, and S. G. Kazarian, Polymer 47, 4649 (2006).

    Article  CAS  Google Scholar 

  8. S. M. Howdle and V. N. Bagratashvili, Chem. Phys. Lett. 214, 214 (1993).

    Article  Google Scholar 

  9. A. R. Albunia, R. Graf, A. Grassi, G. Guerra, and H. W. Spiess, Macromolecules 42, 4929 (2009).

    Article  CAS  Google Scholar 

  10. C. Carlier and T. W. Randolph, AIChE J. 39, 876 (1993).

    Article  CAS  Google Scholar 

  11. Y. Tachikawa, K. Akiyama, C. Yokoyama, and S. Tero-Kubota, Chem. Phys. Lett. 376, 350 (2003).

    Article  CAS  Google Scholar 

  12. S. N. J. Batchelor, Phys. Chem. B 102, 615 (1998).

    Article  CAS  Google Scholar 

  13. A. Yu. Shaulov, N. I. Andreeva, A. G. Sklyarova, A. L. Buchachenko, N. S. Enikolopyan, and Yu. Kh. Shaulov, Sov. Phys. JETP 36, 82 (1972).

    Google Scholar 

  14. A. S. Kopylov, V. A. Radtsig, N. N. Glagolev, A. B. Solovieva, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 998 (2015).

    Article  CAS  Google Scholar 

  15. E. J. Harbron, W. C. Bunyard, and M. D. E. Forbes, J. Polym. Sci., Part B: Polym. Phys. 43, 2097 (2005).

    Article  CAS  Google Scholar 

  16. C. S. Connon, R. F. Falk, and T. W. Randolph, Macromolecules 32, 17 (1999).

    Article  Google Scholar 

  17. RF Patent No. 147199 (2014)

  18. I. Wertz and J. Bolton, Electron Spin Resonance (McGraw-Hill, New York, 1972).

    Google Scholar 

  19. A. Kh. Vorobiev and N. A. Chumakova, in Nitroxides–Theory, Experiment and Applications (InTech, Rijeka, Croatia, 2012).

    Google Scholar 

  20. A. I. Kokorin, in Nitroxides: Theory, Experiment, and Applications (InTech, Rijeka, Croatia, 2012).

    Book  Google Scholar 

  21. A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  22. D. A. Chernova, A. Kh. Vorobiev, J. Appl. Polym. Sci. 121, 102 (2011).

    Article  CAS  Google Scholar 

  23. D. A. Chernova and A. Kh. Vorobiev, J. Polym. Sci., Part B: Polym. Phys. 47, 563 (2009).

    Article  CAS  Google Scholar 

  24. O. H. Griffith, D. W. Cornell, and H. M. J. McConnell, Chem. Phys. 43, 2909 (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Golubeva.

Additional information

Original Russian Text © E.N. Golubeva, O.I. Gromov, N.A. Chumakova, E.D. Feklichev, M.Ya. Mel’nikov, V.N. Bagratashvili, 2016, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2016, Vol. 11, No. 1, pp. 32–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, E.N., Gromov, O.I., Chumakova, N.A. et al. Impregnation of polymers with 2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl (TEMPONE) paramagnetic probe in sub- and supercritical CO2 . Russ. J. Phys. Chem. B 10, 1229–1236 (2016). https://doi.org/10.1134/S1990793116080121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116080121

Keywords

Navigation