Skip to main content
Log in

Micronization of levofloxacin by supercritical antisolvent precipitation

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The process of micronization of levofloxacin (LF, an antibacterial agent of the fluoroquinolone group) by the supercritical antisolvent precipitation technique (SAS) was investigated. It was shown that LF particles of different sizes (from 1 to 10 μm) and of various morphologies (from thin plates to elongated parallelepipeds) can be produced depending on the type of solvent used for conducting micronization. Investigation of the micronized LF preparations using the methods of IR-Fourier spectroscopy, Raman scattering, and circular dichroism showed that the LF micronization caused neither changes in its chemical structure nor racemization. Micronization of LF significantly affects the rate of its dissolution in model systems exhibiting effects dependent on the type of the solvent used for micronization. For example, the highest rate of dissolution at pH 4 was observed for LF preparations micronized with the help of chlorohydrocarbons. It was shown that the rate of dissolution of all micronized LF preparations was higher by 15–30% in comparison with the initial LF, which likely was related to the changes in the degree of crystallinity/amorphousness, as well as of morphologies of microparticles formed in the SAS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bagratashvili, C. E. Bogorodskii, A. N. Konovalov, A. P. Kubyshkin, A. A. Novitskii, V. K. Popov, K. Upton, and S. M. Khoudl, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 53 (2007).

    Google Scholar 

  2. E. N. Antonov, S. E. Bogorodskii, B. M. Fel’dman, E. A. Markvicheva, L. D. Rumsh, and V. K. Popov, Sverkhkrit. Fluidy: Teor. Prakt. 3 (1), 34 (2008).

    Google Scholar 

  3. V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A. V. Mironov, V. Ya. Panchenko, O. O. Parenago, V.K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. B 6, 804 (2012).

    Article  CAS  Google Scholar 

  4. V. G. Slutskii, V. N. Bagratashvili, L. I. Krotova, G. V. Mishakov, V. K. Popov, and S. A. Tsyganov, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 88 (2012).

    Google Scholar 

  5. L. I. Krotova, A. V. Mironov, and V. K. Popov, Russ. J. Phys. Chem. B 7, 932 (2013).

    Article  CAS  Google Scholar 

  6. S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, S. V. Kursakov, V. K. Popov, and V. I. Sevast’yanov, Russ. J. Phys. Chem. B 9, 1011 (2015).

    Article  Google Scholar 

  7. V. N. Bagratashvili, S. E. Bogorodskii, A. M. Egorov, L. I. Krotova, V. K. Popov, and V. I. Sevast’yanov, Sverkhkrit. Fluidy: Teor. Prakt. 10 (3), 26 (2015).

    Google Scholar 

  8. A. M. Vorobei, K. B. Ustinovich, O. I. Pokrovskiy, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 9, 1103 (2015).

    Article  CAS  Google Scholar 

  9. A. M. Vorobei, O. I. Pokrovskii, K. B. Ustinovich, L. I. Krotova, O. O. Parenago, and V. V. Lunin, Sverkhkrit. Fluidy: Teor. Prakt. 10 (2), 51 (2015).

    Google Scholar 

  10. L. Padrela, M. Rodrigues, S. P. Velaga, et al., Eur. J. Pharm. Sci. 38, 9 (2009).

    Article  CAS  Google Scholar 

  11. Patent WO 2005/105293 A1 (2005).

  12. V. P. Yakovlev, Lechashii Vrach, No. 2 (2001). http://www.lvrach.ru/2001/02/4528577/.

    Google Scholar 

  13. E. V. Kudryashova and K. V. Sukhoverkov, Anal. Bioanal. Chem. 408 (4), 1183 (2015).

    Article  Google Scholar 

  14. I. M. Deygen, A. M. Egorov, and E. V. Kudryashova, Mosc. Univ. Chem. Bull. 71, 1 (2016).

    Article  Google Scholar 

  15. S. Sahoo, C. K. Chakraborti, S. C. Mishra, U. N. Nanda, and S. Naik, J. Pharm. Res. 4, 1129 (2011).

    CAS  Google Scholar 

  16. V. L. Dorofeev, Khim.-Farm. Zh. 38 (12), 45 (2004).

    Google Scholar 

  17. C. Bin and Zh. Shao, Chin. J. Pharm. Anal. 31, 1715 (2011).

    Google Scholar 

  18. V. L. Dorofeev, I. V. Titov, I. Yu. Kochin, and A. P. Arzamastsev, Khim.-Farm. Zh. 38 (5), 35 (2004).

    Google Scholar 

  19. M. H. Abraham, A. Ibrahim, and A. M. Zissimos, J. Chromatogr., A 1037, 29 (2004).

    Article  CAS  Google Scholar 

  20. C. Mintz, PhD Thesis (Univ. North Texas, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kudryashova.

Additional information

Original Russian Text © E.V. Kudryashova, I.M. Deygen, K.V. Sukhoverkov, L.Yu. Filatova, N.L. Klyachko, A.M. Vorobei, O.I. Pokrovskiy, K.B. Ustinovich, O.O. Parenago, E.N. Antonov, A.G. Dunaev, L.I. Krotova, V.K. Popov, A.M. Egorov, 2015, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2015, Vol. 10, No. 4, pp. 52–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, E.V., Deygen, I.M., Sukhoverkov, K.V. et al. Micronization of levofloxacin by supercritical antisolvent precipitation. Russ. J. Phys. Chem. B 10, 1201–1210 (2016). https://doi.org/10.1134/S1990793116080054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116080054

Keywords

Navigation