Skip to main content
Log in

Sulfur-containing components of supercritical garlic extracts and their synthetic analogs as potential biocides

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We have shown that a specific component of supercritical (SC) garlic extract and some synthetic disulfide analogs are active as antimicrobials. In the course of this study, six compounds (diallyl disulfide, 1-propenylallyl disulfide, methylallyl disulfide, diallyl trisulfide, 2-vinyl-4H-1,3-dithiin, and 3-vinyl-4H-1,2-dithiin) were isolated from SC garlic extract and identified. Also, two novel sulfoxide-containing garlic analogs were synthesized. All isolated and synthetic substances were tested as potential antimicrobials against gram-positive bacteria Bacillus cereus, Mycobacterium smegmatis, and Micrococcus luteus and gram-negative bacteria Pseudomonas aurantiaca. Diallyl disulfide and diallyl trisulfide exhibited the best activity against both gram-positive and gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Harjai, R. Kumar, and S. Singh, FEMS Immunol. Med. Microbiol. 58, 161 (2010).

    Article  CAS  Google Scholar 

  2. E. A. Palombo, J. Evidence-Based Complementary Altern. Med. 2011, ID 680354 (2011).

    Google Scholar 

  3. S. D. Chavah, N. L. Shetty, and M. Kanuri, Oral. Health Rrev. Dent. 8, 369 (2010).

    Google Scholar 

  4. E. J. Nva and B. Austin, J. Fish. Dis. 32, 963 (2009).

    Article  Google Scholar 

  5. F. Abdel-Ghaffar, M. Semmler, K. A. Al-Rasheid, et al., Parasitol. Res. 108, 979 (2011).

    Article  Google Scholar 

  6. A. Hannan, M. Ikram Ullah, M. Usman, S. Hussian, M. Absar, and K. Javed, Pak. J. Pharm. Sci. 24, 81 (2011).

    Google Scholar 

  7. R. Ruiz, M. P. Garcia, A. Lara, and L. A. Rubio, Vet. Microbiol. 144, 110 (2010).

    Article  CAS  Google Scholar 

  8. S. Liu, Y. Sun, W. Li, et al., FEMS Microbiol. Lett. 303, 183 (2010).

    Article  CAS  Google Scholar 

  9. M. N. Palaksha, M. Ahmed, and S. Das, J. Nat. Sci. Biol. Med. 1, 12 (2010).

    Article  CAS  Google Scholar 

  10. G. Goncagul and E. Ayaz, Recent Pat. Antiinfect. Drug Discov. 5, 91 (2010).

    Article  CAS  Google Scholar 

  11. J. F. Ayala-Zavala and G. A. Gonzalez-Agular, J. Food. Sci. 75, M398 (2010).

    Article  CAS  Google Scholar 

  12. J. F. Ayala-Zavala, G. A. Gonzalez-Agular, and L. del Toro Sanchez, J. Food. Sci. 74 (7), R84 (2009).

    Article  Google Scholar 

  13. H. Borjihan, A. Ogita, K. Fujita, E. Hirasawa, and T. Tanaka, J. Antibiot. (Tokyo). 62, 691 (2009).

    Article  CAS  Google Scholar 

  14. H. Borjihan, A. Ogita, K. Fujita, M. Doe, and T. Tanaka, Planta Med. 76, 1864 (2010).

    Article  CAS  Google Scholar 

  15. F. C. Velkers, K. Dieho, F. W. Pecher, J. C. Vernooij, J. H. van Eck, and W. J. Landman, Poult. Sci. 90, 364 (2011).

    Article  CAS  Google Scholar 

  16. A. Coppi, M. Cabinian, D. Mirelman, and P. Sinnis, Vet. Antimicrob. Agents Chemother., 1737 (2006).

    Google Scholar 

  17. M. Alam, V. Dwivwdi, A. A. Khan, and O. Mohammad, Nanomedicine (London). 4, 713 (2009).

    Article  CAS  Google Scholar 

  18. A. Khodavandi, F. Alizadeh, F. Aala, Z. Sekawi, and P. P. Chong, Mycopathologia 169, 287 (2010).

    Article  CAS  Google Scholar 

  19. E. J. Nya and B. Ausin, Fish Shellfish Immunol. 30, 845 (2011).

    Article  CAS  Google Scholar 

  20. K. M. Lemar, O. Passa, M. A. Aon, et al., Microbiology 151, 3257 (2005).

    Article  CAS  Google Scholar 

  21. S. Al-Quraishy, D. Delic, H. Sies, F. Wunderlich, A. A. Abdel-Baki, and M. A. Dkhil, Parasitol. Res. 109, 387 (2011).

    Article  Google Scholar 

  22. T. Waag, C. Gelhaus, J. Rath, A. Stich, M. Lieppe, and T. Schirmeister, Bioorg. Med. Chem. Lett. 20, 5541 (2010).

    Article  CAS  Google Scholar 

  23. S. Yousuf, A. Ahmad, A. Khan, L. A. Mansoor, and L. A. Khan, Can. J. Microbiol. 56, 816 (2010).

    Article  CAS  Google Scholar 

  24. D. Yu. Zalepugin, N. A. Til’kunova, Yu. S. Yashin, I. V. Chernyshova, V. S. Mishin, and A. L. Mulyukin, Sverkhkrit. Flyuidy Teor. Prakt. 5 (1), 88 (2010).

    Google Scholar 

  25. M. E. Rybak, E. M. Calvey, and J. M. Harnly, J. Agric. Food Chem. 52, 682 (2004).

    Article  CAS  Google Scholar 

  26. E. Block, S. Ahmad, J. L. Catalfamo, M. K. Jain, and R. Apiz-Castro, J. Am. Chem. Soc. 108, 7045 (1986).

    Article  CAS  Google Scholar 

  27. K. K. Nielson, A. W. Mahoney, L. S. Williams, and V. C. Rogers, J. Food Compos. Anal. 4, 39 (1991).

    Article  CAS  Google Scholar 

  28. J. A. Milner, J. Nutrit. 136, 827 (2006).

    Google Scholar 

  29. S. K. Spangler, M. A. Visalli, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents Chemother. 40, 772 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Zalepugin.

Additional information

Original Russian Text © D.Yu. Zalepugin, N.A. Til’kunova, I.V. Chernyshova, A.L. Mulyukin, 2012, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2012, Vol. 7, No. 4, pp. 72–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalepugin, D.Y., Til’kunova, N.A., Chernyshova, I.V. et al. Sulfur-containing components of supercritical garlic extracts and their synthetic analogs as potential biocides. Russ. J. Phys. Chem. B 7, 843–848 (2013). https://doi.org/10.1134/S1990793113070154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113070154

Keywords

Navigation