Skip to main content
Log in

Real-gas properties of n-alkanes, O2, N2, H2O, CO, CO2, and H2 for diesel engine operation conditions

  • Reviews
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The objective of the research outlined in this paper was to develop the analytical approximations for calculating real-gas properties (p-v-T data, thermodynamic functions: internal energy, enthalpy, and entropy, and specific heats) of vapor-phase n-alkanes from C1 (methane) to C14 (normal tetradecane), O2, N2, H2O, CO, CO2, and H2 within the range of pressure 0.05 MPa ≤ p ≤ 20 MPa and temperature 280 K ≤ T ≤ 3000 K aimed for implementation into computational fluid dynamics (CFD)-codes simulating the operation process in modern Diesel engines. The analytical approximations have been developed based on available literature data and on the new equation of state for moderately dense gases. The approximations reported are rather simple and therefore can be used directly in CFD codes. Approximations for mixing rules are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A1, A2, ...:

coefficients for individual species b = λRT c /p c \( \bar b \) = bρ c = λ/Z c

B :

second virial coefficient

B g = B/μ:

second virial coefficient

\( \bar B \) = Bρ c :

dimensionless second virial coefficient

\( \overline {B_1 } = \tau \frac{{d\overline B }} {{d\tau }} \) :

dimensionless first logarithmic derivative of second virial coefficient

\( \overline {B_2 } = \tau \frac{{d\overline {B_1 } }} {{d\tau }} \) :

dimensionless second logarithmic derivative of second virial coefficient \( \overline {B_s } \equiv d{{\left( {\tau \bar B} \right)} \mathord{\left/ {\vphantom {{\left( {\tau \bar B} \right)} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }} = \bar B + \overline {B_1 } \) \( \overline {B_{2t} } \equiv d{{\left( {\tau \overline {B_1 } } \right)} \mathord{\left/ {\vphantom {{\left( {\tau \overline {B_1 } } \right)} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }} = \overline {B_1 } + \overline {B_2 } \)

C :

coefficient in thermal equation of state

C g = C/μ:

coefficient in thermal equation of state

\( \bar C \) = Cρ 2 c :

dimensionless coefficient in thermal equation of state

C p0 :

ideal-gas specific heat at constant pressure

C v0 :

ideal-gas specific heat at constant volume

C p, exc :

excess specific heat at constant pressure

C v, exc :

excess specific heat at constant volume

C p :

real-gas specific heat at constant pressure

C v :

real-gas specific heat at constant volume

D :

coefficient in thermal equation of state

D g = D/μ:

coefficient in thermal equation of state

\( \bar D \) = Dρ 3 c :

dimensionless coefficient in thermal equation of state

E :

real-gas internal energy

E 0 :

ideal-gas internal energy

E exc :

excess internal energy

F :

coefficient in thermal equation of state

\( \bar F \) = Fρ 4 c :

dimensionless coefficient in thermal equation of state

G :

coefficient in thermal equation of state

\( \bar G \) = Gρ 5 c :

dimensionless coefficient in thermal equation of state

H :

real-gas enthalpy

H 0 :

ideal-gas enthalpy

H exc :

excess enthalpy

I :

coefficient in thermal equation of state

\( \bar I \) = Iρ 6 c :

dimensionless coefficient in thermal equation of state

p :

pressure

p c :

critical pressure

r = ρ/ρ c :

dimensionless density

R :

universal gas constant

R g = R/μ:

universal gas constant

S :

real-gas entropy

S 0 :

ideal-gas entropy

S exc :

excess entropy

T :

temperature

T 0 :

reference temperature

T c :

critical temperature

x = θ/T:

dimensionless reciprocal temperature

x i = θ i /T (i = 1, 2, 3, 4):

dimensionless reciprocal temperature

x0 = θ/T0:

dimensionless reciprocal reference temperature

xi0 = θ i /T0 (i = 1, 2, 3, 4):

dimensionless reciprocal reference temperature

Z c = p c /(ρ c RT c ):

compressibility in the critical point

λ:

fitting parameter

μ:

molecular mass

Π = p/p c :

dimensionless pressure

ρ:

density

ρ c :

critical density

τ = T/T c :

dimensionless temperature

θ, θ1, θ2, θ3, θ4 :

characteristic vibration temperatures of molecule

References

  1. Physicochemical Properties of Individual Hydrocarbons: A Handbook, Ed. by V. M. Tatevskii (Moscow, Gostoptekhizdat, 1960) [in Russian].

    Google Scholar 

  2. N. B. Vargaftik, Handbook to the Thermal Properties of Gases and Liquids (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  3. R. W. Haywood and J. H. Matthewman, Enthalpy-Entropy Diagram of Steam (Cambridge Univ., Cambridge, 1968).

    Google Scholar 

  4. JANAF Thermochemical Tables, 2nd ed. (US Dept. of Commerce, National Bureau of Standards, Washington, DC, 1970).

  5. S. L. Rivkin and A. A. Aleksandrov, Thermodynamic Properties of Water and Water Vapor (Energiya, Moscow, 1975) [in Russian].

    Google Scholar 

  6. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  7. V. V. Sychev, A. A. Vasserman, V. A. Zagroruchenko, et al., Thermodynamic Properties of Methane (Izd. Standartov, Moscow, 1979) [in Russian].

    Google Scholar 

  8. V. V. Sychev, A. A. Vasserman, V. A. Zagoruchenko, et al., Thermodynamic Properties of Ethane (Izd. Standartov, Moscow, 1982) [in Russian].

    Google Scholar 

  9. V. V. Sychev, A. A. Vasserman, V. A. Zagoruchenko, et al., Thermodynamic Properties of Propane (Izd. Standartov, Moscow, 1989) [in Russian].

    Google Scholar 

  10. I. M. Abdulagatov et al., Thermodynamic Properties of n-Pentane (Izd. Standartov, Moscow, 1990) [in Russian].

    Google Scholar 

  11. B. A. Grigor’ev, Yu. L. Rastorguev, A. A. Gerasimov, et al., Thermodynamic Properties of Normal Hexane (Izd. Standartov, Moscow, 1990) [in Russian].

    Google Scholar 

  12. K. E. Starling and Y. C. Kwok, “Thermo Data Refined for LPG, Part 1,” Hydrocarbon Process. 50(3), 101 (1971).

    CAS  Google Scholar 

  13. K. E. Starling and Y. C. Kwok, “Thermo Data Refined for LPG, Parts 2, 3,” Hydrocarbon Process. 50(4), 139 (1971).

    CAS  Google Scholar 

  14. K. E. Starling and Y. C. Kwok, “Thermo Data Refined for LPG, Parts 4, 5,” Hydrocarbon Process. 50(6), 116 (1971).

    Google Scholar 

  15. K. E. Starling and Y. C. Kwik, “Thermo Data Refined for LPG, Parts 6, 7,” Hydrocarbon Process. 50(7), 115 (1971).

    Google Scholar 

  16. K. E. Starling and Y. C. Kwok, “Thermo Data Refined for LPG, Parts 8, 9,” Hydrocarbon Process. 50(9), 170 (1971).

    Google Scholar 

  17. B. A. Younglove and J. F. Ely, “Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane and Normal Butane,” J. Phys. Chem. Ref. Data 16, 577–798 (1987).

    CAS  Google Scholar 

  18. G. R. Gurevich and A. I. Brusilovskii, Handbook on Phase State and Properties of Gaseous and Condensed Mixtures (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  19. K. Ruzicka and V. Majer, “Simultaneous Treatment of Vapor Pressures and Related Thermal Data between the Triple and Normal Boiling Temperatures for n-Alkanes C5–C20,” J. Phys. Chem. Ref. Data 23, 1–39 (1994).

    Article  CAS  Google Scholar 

  20. B. F. Dodge, Chemical Engineering Thermodynamics, 1st ed. (New York, London, 1944).

  21. N. M. Kuznetsov, E. N. Aleksandrov, and O. N. Davydova, “Analytical Representation of the Curves of Liquid-Vapor Phase Equilibrium for Saturated Hydrocarbons,” High Temp. 40, 359–363 (2002).

    Article  CAS  Google Scholar 

  22. Methods of Calculating Thermophysical Properties of Gases and Liquids, Ed. by V. V. Fedorov (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  23. T. P. Thinh, J. L. Duran, R. S. Ramalho, and S. Kaliaquine, “Equations Improving Predictions,” Hydrocarbon Process. 50(1), 98–104 (1971).

    CAS  Google Scholar 

  24. “Selected Values of Properties of Hydorcarbons and Related Compounds,” Am. Petrol. Inst. Res. Project 44 (30 Apr. 1969).

  25. T. P. Thinh, J. L. Duran, R. S. Ramalho, and S. Kaliaquine, “Equations Improving Predict Heat Capacity More Accurately,” Hydrocarbon Process. 55(8), 153–156 (1976).

    Google Scholar 

  26. M. Bures, V. Majer, and M. Zabransky, Chem. Eng. Sci. 36, 529–537 (1981).

    Article  CAS  Google Scholar 

  27. TRC Thermodynamic Tables-Hydrocarbons (Thermodyn. Res. Center, Texas A&M Univ. System, Texas, College Station, TX, USA, 1987).

  28. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamic Properties of Oxygen, GSSSD, Monography Ser. (Standard, Moscow, 1981) [in Russian].

    Google Scholar 

  29. A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, “Equilibrium and Transport Properties of Eleven Polyatomic Gases at Low Density,” J. Phys. Chem. Ref. Data 16, 445 (1987).

    Article  CAS  Google Scholar 

  30. L. V. Gurvich, I. V. Veitz, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances, Vol. 1, Book 2: Tables of Thermodynamic Properties, 3rd ed. (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  31. Molecular Constants of Inorganic Compounds, Hanbook, Ed. by K. S. Krasnov (Khimiya, Leningrad, 1979) [in Russian].

    Google Scholar 

  32. R. T. Jacobsen and R. B. Stewart, “Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 64 to 2000 K with Pressures to 10000 bar,” J. Phys. Chem. Ref. Data 2, 757 (1973).

    Article  CAS  Google Scholar 

  33. R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, “Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa,” J. Phys. Chem. Ref. Data 15, 735 (1986).

    CAS  Google Scholar 

  34. J. M. H. Levelt Sengers, M. Klein, and J. S. Gallagher, Pressure-Volume-Temperature Relationships of Gases Virial Coefficients, Amer. Inst. of Phys. Handbook, 3rd ed. (McGraw-Hill, New York, 1972).

    Google Scholar 

  35. J. M. H. Levelt Sengers, W. L. Greer, and J. V. J. Sengers, Phys. Chem. Ref. Data 5(1) (1976).

  36. H. D. Baehr, H. C. Hartmann, and H. Schomacker, Thermodynamic Functions of Ideal Gas for Temperature to 6000 K (Springer, Berlin, 1968).

    Google Scholar 

  37. R. E. Barieau, “Analitical Expressions for the Zero Pressure Thermodynamic Properties of Nitrogen Gas Including Corrections for the Latest Values of the Atomic Constants and the New Carbon-12 Atomic Weight Scale,” J. Phys. Chem. 69, 495–499 (1965).

    Article  CAS  Google Scholar 

  38. M. P. Vukalovich, S. L. Rivkin, and A. A. Alexandrov, Tables of Thermodynamic Properties of Water and Water Vapor (Izd. Standartov, Moscow, 1969) [in Russian].

    Google Scholar 

  39. “Tables of Thermal Properties of Gases,” Circular 564 (Nat. Bureau of Standards, 1955).

  40. G. C. Kennedy, “Volume-Temperature Relations in Water at Elevated Temperatures and Pressures,” Am. J. Sci. 248, 540 (1950).

    Article  CAS  Google Scholar 

  41. J. Juza, Equation of State of Water and Steam in the Range from −20 +900°C, from 0 to 10000.000 Bar (Mech. Engrg. Res. Inst. of Chechoslovak Acad. Sci., Prague, 1962).

    Google Scholar 

  42. J. Kestin and J. V. Sengers, “New International Formulation for the Thermodynamic Properties of Light and Heavy Water,” J. Phys. Chem. Ref. Data 15(1), 305 (1986).

    Article  CAS  Google Scholar 

  43. R. A. Dobbins, K. Mohammed, and D. A. Sullivan, “Pressure and Density Series Equations of State for Steam as Derived from the Haar-Gallagher-Kell Formulation,” J. Phys. Chem. Ref. Data 17(1), 1 (1988).

    Article  CAS  Google Scholar 

  44. A. Saul and W. Wagner, “A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa,” J. Phys. Chem. Ref. Data 18, 1537 (1989).

    Article  CAS  Google Scholar 

  45. H. Sato, K. Watanabe, Levert Sengers, et al., “Sixteen Thousand Evaluated Experimental Thermodynamic Property Data for Water and Steam,” J. Phys. Chem. Ref. Data 20, 1023 (1991).

    Article  CAS  Google Scholar 

  46. Thermodynamic Properties of Individual Substances, Handbook, Ed. V. P. Glushko (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  47. Physical Quantities, Handbook, Ed. by I. S. Grigoriev and E. Z. Melikhov (Anergoatomizdat, Moscow, 1991), p. 316 [in Russian].

    Google Scholar 

  48. R. D. Goodvin, “Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa,” J. Phys. Chem. Ref. Data 14, 849 (1985).

    Article  Google Scholar 

  49. M. P. Vukalovich and V. V. Altunin, Thermophysical Properties of Carbon Dioxide (Atomizdat, Moscow, 1965) [in Russian].

    Google Scholar 

  50. L. V. Gurvich, I. V. Veitz, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko, L. V. Gurvich, et al. (Nauka, Moscow, 1962), vol. 2 [in Russian].

    Google Scholar 

  51. H. W. J. Wooley, Res. Nat. Bur. Standards 52, 289 (1954).

    Google Scholar 

  52. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  53. Thermophysical Properties of Substances of Technical Importance (Energoatomizdat, Moscow, 1989) [in Russian].

  54. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, Chapman and Hall, London, New York, 1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, S.M., Kuznetsov, N.M. & Krueger, C. Real-gas properties of n-alkanes, O2, N2, H2O, CO, CO2, and H2 for diesel engine operation conditions. Russ. J. Phys. Chem. B 3, 1191–1252 (2009). https://doi.org/10.1134/S1990793109080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793109080090

Keywords

Navigation