Skip to main content
Log in

The dispersion of polymeric materials with the use of supercritical fluids

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The dispersion of polyisobutylene was studied on a Thar RESS-100-2 test bench over the temperature and pressure ranges 45–120°C and 100–350 bar; 30–1000 nm particles were obtained. Particle size could be controlled by varying process parameters. A procedure for modifying polymer particles during rapid expansion of supercritical solutions was suggested. Modification suppressed agglomeration and caused particle coating with a modifier (NaCl). The use of supercritical fluid antisolvents was shown to be promising for the dispersion of polymers to nanosized particles. An experimental bench for performing such processes was described. A procedure for trapping nanoparticles prepared using antisolvents was suggested. Particles with sizes of 10 to 150 nm were obtained in the dispersion of polystyrene in the toluene-polystyrene-supercritical carbon dioxide system at 40–150 bar and temperatures of 40 and 100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Petrunin, Ultradispersed Powders are Russian Area of Nanomaterials and Perspective Base of Nanotechnologies (Mosc. Inzh. Fiz. Inst., Moscow, 2003), p. 167 [in Russian].

    Google Scholar 

  2. F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Suband Supercritical Fluides in Polymer Processing (FEN, Kazan, 2007) [in Russian].

    Google Scholar 

  3. J. W. Tom, P. G. Debenedetti, and R. J. Jerome, J. Supercrit. Fluids, No. 7, 9 (1994).

  4. X. Kwauk and J. W. Jung, Bae. Korean J. Chem. Eng, No. 6, 1245 (2004).

  5. I. M. Gil’mutdinov, A. N. Sabirzyanov, and F. M. Gumerov, Sverkhkrit. Fluidy Teor. Prakt. 3(1), 43 (2008).

    Google Scholar 

  6. K. T. Lim, Macromol. Rapid Commun., No. 26, 1779 (2005).

  7. S. D. Yeo and E. Kiran, J. Supercrit. Fluids, No. 34, 287 (2005).

  8. R. Reverchon and E. Adami, J. Supercrit. Fluids, No. 37, 1 (2006).

  9. J. Jung and M. Perrut, J. Supercrit. Fluids, No. 20, 179 (2001).

  10. D. J. Dixon, K. P. Johnston, and R. A. Bodmeier, AIChE J. 39, 127 (1993).

    Article  CAS  Google Scholar 

  11. X. Kwauk and P. G. Debenedetti, J. Aerosol Sci. 24, 445 (1993).

    Article  CAS  Google Scholar 

  12. M. Weber, L. M. Russell, and P. G. Debenedetti, J. Supercrit. Fluids 23, 65 (2002).

    Article  CAS  Google Scholar 

  13. Kim Sunwook, Kim Young-Sam, and Lee Sung-Bong, J. Supercrit. Fluids 13, 99 (1998).

    Article  CAS  Google Scholar 

  14. A. K. McClellan, E. G. Bauman, and M. A. McHugh, Supercritical Fluid Technology (Amsterdam, 1985), p. 161.

  15. A. J. Seckner, A. K. McClellan, and M. A. McHugh, AIChE J. 34, 8 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gil’mutdinov.

Additional information

Original Russian Text © I.M. Gil’mutdinov, V.F. Khairutdinov, I.V. Kuznetsova, A.A. Mukhamadiev, F.R. Gabitov, F.M. Gumerov, A.N. Sabirzyanov, 2009, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2009, Vol. 4, No. 3, pp. 25–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil’mutdinov, I.M., Khairutdinov, V.F., Kuznetsova, I.V. et al. The dispersion of polymeric materials with the use of supercritical fluids. Russ. J. Phys. Chem. B 3, 1145–1153 (2009). https://doi.org/10.1134/S1990793109080041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793109080041

Key words

Navigation