Skip to main content
Log in

Modification of silicon nanoparticle surface with gold or silver attenuates its biocompatibility in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The effects of crystalline silicon (Si) nanoparticles covered with gold and silver on the viability and state of cellular organelles of cultured human peripheral blood lymphocytes were investigated. After interaction with Si nanoparticles covered with gold (Si/Au) or with silver (Si/Ag), the reactive oxygen species in cells increased, but their viability was not decreased. The Si/Au nanoparticles decreased functional activity of lysosomes and mitochondria, while Si/Ag decreased the functional activity only of mitochondria. It is concluded that modification of a surface with gold or silver results in a reduction of biocompatibility of crystalline silicon nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

NP:

nanoparticles

MIF:

mean intensity of fluorescence

References

  • Asharani, P.V., Mun, G.L.K., Hande, M.P., and Valiyaveettil, S., Cytotoxicity and genotoxicity of silver, ACS Nano, 2009, vol. 3, pp. 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Baltazar, G.C., Guha, S., Lu, W., Lim. J., Boesze-Battaglia, K., Laties, A.M., Tyagi, P., Kompella, U.B., and Mitchell, C.H., Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells, PloS One, 2012, vol. 7, pp. 1–10.

    Article  Google Scholar 

  • Bhattacharjee, S., Hann, L., Evers, N.M., Jiang, X., Marcelis, A.T., Zuilhof, H., Rietjens, I.MCM., and Alink, G., Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells, Particle Fibre Toxicol., 2010, vol. 7, pp. 1–12.

    Article  Google Scholar 

  • Braydich-Stolle, L., Hussain, S., Schlager, J.J., and Hofmann, M., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol. Sci., 2005, vol. 88, pp. 412–419.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Canham, L.T., Nanoscale semiconducting silicon as a nutritional food additive, Nanotechnology, 2007, vol. 18, pp. 1–6.

    Article  Google Scholar 

  • Choi, J., Zheng, Q., Katz, H.E., and Guilarte, T.R., Silica-based nanoparticle uptake and cellular response by primary microglia, Environ. Health Persp., 2010, vol. 118, pp. 589–595.

    Article  CAS  Google Scholar 

  • Dyrnev, A.D., Solomina, A.S., Daugel-Dauge, N.O., Ganataev, A.K., Shreader, E.D., Nemova, E.P., Shreader, O.V., Veligura, V.A. Osminkina, L.A., Timoshenko, V.Yu., and Seredenin, S.B., Investigation of genotoxic and teratogenic activity of silicon nanocrystals, Bull. Exp. Biol. Med., 2010, vol. 149, no. 4, pp. 429–443.

    Google Scholar 

  • Fujoka, K., Hanada, S., Kanaya, F., Hoshino, A., Sato, K., Yokosuka, S., Takigami, Y., Hirakuri, K., Shiohara, A., Tilley, R.D., Manabe, N., Yamamoto, K., and Manome, Y., Toxicity test: fluorescent silicon nanoparticles, J. Physics: Conf. Series., 2011, vol. 304, pp. 1–5.

    Google Scholar 

  • Halamoda Kenzaoui, B., Chapuis Bernasconi, C., Guney-Ayra, S., and Juillerat-Jeanneret, L., Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells, Biochem. J., 2012, vol. 441, pp. 813–821.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Jain, K.P., El-Sayed, I.H., and El-Sayed, M.A., Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 2008, vol. 23, pp. 217–228.

    Article  PubMed  Google Scholar 

  • Ipe, B.I., Lehnig, M., and Niemeyer, C.M., On the generation of free radical species from quantum dots, Small, 2005, vol. 1, pp. 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Iskusnykh, I.Y., Popov, A.L., Popova, T.N., Kashkarov, V.M., and Tsipenyuk, V.N., Effect of nanocrystalline silicon for biological activity and fibroblast proliferation and laryngeal carcinoma cells, Vestnik VGU, 2012, vol. 1, pp. 96–102.

    Google Scholar 

  • Lee, J.S., Seferos, D.S., Giljohann, D.A., and Mirkin, C.A., Thermodynamically controlled separation of polyvalent 2-nm gold nanoparticle-oligonucleotide conjugates, J. Am. Chem. Soc., 2008, vol. 130, pp. 5430–5431.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Zhao, L., Wei, T., Zhao, Y., and Chen, C., The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles, Biomaterials, 2011, vol. 32, pp. 4030–4041.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W., Huang, Y., Zhou, X., and Ma, Y., In vitro toxicity of silica nanoparticles in human lung cancer cells, Toxic. Appl. Pharm., 2006, vol. 217, pp. 252–259.

    Article  CAS  Google Scholar 

  • Lu, J., Liong, M., Li, Z., Zink, J.I., and Tamanoi, F., Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals, Small, 2011, vol. 6, pp. 1794–1805.

    Article  Google Scholar 

  • Moore, M.N., Readman, J.A.J., Readman, J.W., Lowe, D.M., Frickers, P.E., and Beesley, A., Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study, Nanotoxicology, 2009, vol. 3, pp. 40–45.

    Article  CAS  Google Scholar 

  • Oloffs, A., Grosse-Siestrup, C., Bisson, S., Rinck, M., Rudolph, R., and Gross, U., Biocompatibility of silvercoated polyurethane catheters and silver-coated dacron material, Biomaterials, 1994, vol. 15, pp. 753–758.

    Article  PubMed  CAS  Google Scholar 

  • Osminkina, L.A., Gongalsky, M.B., Timoshenko, V.Yu., and Kudryavtsev, A.A., Silicon nanoparticles as effective sonosensitizer for treatment in oncological patients, Onkokhirurgiya, 2011, vol. 3, no. 1, pp. 34–36.

    Google Scholar 

  • Panyam, J., Zhou, W., Prabha, S., Sahoo, S.K., and Labhasetwar, V., Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery, FASEB J., 2002, vol. 16, pp. 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  • Shubenkov, A.N., Korovin, S.B., Andreeva, E.R., Buravkova, L.B., and Pustovoy, V.I., In vitro evaluation of silicon nanoparticles cytotoxicity, Biofizika, 2014, vol. 59, no. 1, pp. 134–139.

    Google Scholar 

  • Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W., and Tang, L., Nanomaterial cytotoxicity is composition, size, and cell type dependent, Particle Fibre Toxicol., 2010, vol. 7, pp. 1–17.

    Article  Google Scholar 

  • Stern, S.T., Adiseshaiah, P.P., and Crist, R.M., Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity, Particle Fibre Toxicol., 2012, vol. 9, pp. 1–15.

    Article  Google Scholar 

  • Thibodeau, M.S., Giardina, C., Knecht, D.A., Helble, J., and Hubbard, A.K., Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity, Toxicol. Sci., 2004, vol. 80, pp. 34–48.

    Article  Google Scholar 

  • Timoshenko, V.Yu., Kudryavtsev, A.A., Osminkina, L.A., Vorontsov, A.S., Ryabchikov, Yu.V., Belogorokhov, I.A., Kovalev, D.V., and Kashkarov, P.K., Silicon nanocrystals as photosensitizers of active oxygen for biomedical applications, Pis’ma ZhETF, 2006, vol. 83, no. 9, pp. 492–495.

    Google Scholar 

  • Vladimirov, A., Korovin, S., Surkov, A., Kelm, E., and Pustovoy, V., Synthesis of luminescent Si nanoparticles using the laser-induced pyrolysis, Laser Physics, 2011, vol. 21, pp. 830–835.

    Article  CAS  Google Scholar 

  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R., and Nel, A.E., Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Letters, 2006, vol. 6, pp. 1794–1807.

    Article  PubMed  CAS  Google Scholar 

  • Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., and Shi, H., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2008, vol. 2, pp. 2121–2134.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Buravkova.

Additional information

Original Russian Text © A.N. Shubenkov, S.B. Korovin, E.R. Andreeva, L.B. Buravkova, V.I. Pustovoy, 2014, published in Tsitologiya, 2014, Vol. 56, No. 7, pp. 511–515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubenkov, A.N., Korovin, S.B., Andreeva, E.R. et al. Modification of silicon nanoparticle surface with gold or silver attenuates its biocompatibility in vitro. Cell Tiss. Biol. 8, 384–388 (2014). https://doi.org/10.1134/S1990519X14050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14050083

Keywords

Navigation