Skip to main content
Log in

Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Activation of extrasynaptic NMDA receptors by high glutamate concentrations is one of the key pathogenic factors following a stroke. For this reason, the search for efficient neuroprotective agents that could reduce glutamate toxicity is a pressing need. Ca2+ overload in response to glutamate leads to activation of signaling cascades in the cell and the development of oxidative stress, which ultimately leads to apoptosis. Using a model system of acute excitotoxicity caused by 50 μM NMDA, which was used as a specific NMDA receptor activator, we demonstrated that during 2 hours of incubation the viability of the primary neuronal culture decreased by 30–50%. To demonstrate that the observed effect is associated not only with the Ca2+ influx into the cytoplasm through the activated NMDA receptors, we decreased the Ca2+ concentration in the medium. The lowered Ca2+ concentration, as well as its complete absence, did not affect NMDA toxicity. We tested carnosine, a naturally occurring dipeptide and promising antioxidant, as a neuroprotective agent. The addition of 2 mM carnosine prevented the decrease in cell viability caused by a 2-hour incubation with 50 μM NMDA, while it showed no effect on the viability of the cell culture in the control. Based on the results, we consider the further study of carnosine, its complexes, and analogues as neuroprotectors in cerebral ischemia promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parsons, M.P. and Raymond, L.A., Neuron, 2014, vol. 82, no. 2, pp. 279–293.

    Article  CAS  PubMed  Google Scholar 

  2. Davydova, O.N. and Boldyrev, A.A., Annaly Klin. Eksp. Nevrol., 2007, vol. 4, pp. 28–34.

    Google Scholar 

  3. Babot, Z., Cristofol, R., and Sunol, C., Eur. J. Neurosci., 2005, vol. 21, no. 1, pp. 103–112.

    Article  PubMed  Google Scholar 

  4. Dutta, R. and Trapp, B.D., Prog. Neurobiol., 2011, vol. 93, no. 1, pp. 1–12.

    Article  PubMed  Google Scholar 

  5. Lu, Y.M., Yin, H.Z., Chiang, J., and Weiss, J.H., J. Neurosci., 1996, vol. 16, no. 17, pp. 5457–5465.

    CAS  PubMed  Google Scholar 

  6. Boldyrev, A.A. and Kuklei, M.L., Neirokhimiya, 1996, vol. 13, no. 4, pp. 271–278.

    Google Scholar 

  7. Tymianski, M., Wallace, M.C., Spigelman, I., Uno, M., Carlen, P.L., Tator, C.H., and Charlton, M.P., Neuron, 1993, vol. 11, no. 2, pp. 221–235.

    Article  CAS  PubMed  Google Scholar 

  8. Wie, M.B., Koh, J.Y., Won, M.H., Lee, J.C., Shin, T.K., Moon, C.J., Ha, H.J., Park, S.M., and Kim, H.C., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, vol. 25, no. 8, pp. 1641–1659.

    Article  CAS  PubMed  Google Scholar 

  9. Hetman, M. and Gozdz, A., Eur. J. Biochem., 2004, vol. 271, no. 11, pp. 2050–2055.

    Article  CAS  PubMed  Google Scholar 

  10. Coffey, E.T., Nat. Rev. Neurosci., 2014, vol. 15, no. 5, pp. 285–299.

    Article  CAS  PubMed  Google Scholar 

  11. Lopachev, A.V., Lopacheva, O.M., Osipova, E.A., Vladychenskaya, E.A., Smolyaninova, L.V., Fedorova, T.N., Koroleva, O.V., and Akkuratov, E.E., Cell Biochem. Funct., 2016, vol. 34, no. 5, pp. 367–377.

    Article  CAS  PubMed  Google Scholar 

  12. Suslina, Z.A., Illarioshkin, S.N., and Piradov, M.A., Annaly Klin. Eksp. Nevrol., 2007, vol. 1, no. 1, pp. 5–9.

    Google Scholar 

  13. Reynolds, I.J. and Hastings, T.G., J. Neurosci., 1995, vol. 15, no. 5, pt. 1, pp. 3318–3327.

    CAS  PubMed  Google Scholar 

  14. Boldyrev, A.A., Stvolinskii, S.L., and Fedorova, T.N., Usp. Fiziol. Nauk, 2007, vol. 38, no. 3, pp. 57–71.

    CAS  PubMed  Google Scholar 

  15. Boldyrev, A.A., Aldini, G., and Derave, W., Physiol. Rev., 2013, vol. 93, no. 4, pp. 1803–1845.

    Article  CAS  PubMed  Google Scholar 

  16. Lopachev, A.V., Lopacheva, O.M., Abaimov, D.A., Koroleva, O.V., Vladychenskaya, E.A., Erukhimovich, A.A., and Fedorova, T.N., Biochemistry (Moscow), 2016, vol. 81, no. 5, pp. 511–520.

    Article  CAS  Google Scholar 

  17. Abaimov, D.A., Sariev, A.K., Tankevich, M.V., Pantyukhova, E.Yu., Prokhorov, D.I., Fedorova, T.N., Lopachev, A.V., Stvolinskii, S.L., Konovalova, E.V., and Seifulla, R.D., Eksp. Klin. Farmakol., 2015, vol. 78, no. 3, pp. 30–35.

    PubMed  Google Scholar 

  18. Dobrota, D., Fedorova, T., Stvolinsky, S., Babusikova, E., Likavcanova, K., Drgova, A., Strapkova, A., and Boldyrev, A., Neurochem. Res., 2005, vol. 30, no. 10, pp. 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  19. Boldyrev, A., Song, R., Lawrence, D., and Carpenter, D.O., Neuroscience, 1999, vol. 94, no. 2, pp. 571–577.

    Article  CAS  PubMed  Google Scholar 

  20. Bilimoria, P.M. and Bonni, A., Cold Spring Harb. Protoc., 2008, vol. 3, no.12.

    Google Scholar 

  21. Antonov, S.M. and Johnson, J.W., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 25, pp. 14571–14576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis, S. and Donnan, G.A., Cerebrovasc. Dis., 2014, vol. 38, no. 1, pp. 59–72.

    Article  PubMed  Google Scholar 

  23. Akkuratov, E.E., Lopacheva, O.M., Kruusmagi, M., Lopachev, A.V., Shah, Z.A., Boldyrev, A.A., and Liu, L., Mol. Neurobiol., 2015, vol. 52, no. 3, pp. 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  24. Ruiz, A., Matute, C., and Alberdi, E., Cell Calcium, 2009, vol. 46, no. 4, pp. 273–281.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lopachev.

Additional information

Original Russian Text © A.V. Lopachev, O.M. Lopacheva, E.E. Akkuratov, S.L. Stvolinskii, T.N. Fedorova, 2017, published in Neirokhimiya, 2017, Vol. 34, No. 1, pp. 49–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopachev, A.V., Lopacheva, O.M., Akkuratov, E.E. et al. Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity. Neurochem. J. 11, 38–42 (2017). https://doi.org/10.1134/S1819712417010068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712417010068

Keywords

Navigation