Skip to main content
Log in

Nekhoroshev theorem for perturbations of the central motion

  • On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benettin, G., Galgani, L., and Giorgilli, A., A Proof of Nekhoroshev’s Theorem for the Stability Times in Nearly Integrable Hamiltonian Systems, Celestial Mech., 1985, vol. 37, no. 1, pp. 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  2. Blaom, A.D., A Geometric Setting for Hamiltonian Perturbation Theory, Mem. Amer. Math. Soc., 2001, vol. 153, no. 727, 112 pp.

    MathSciNet  MATH  Google Scholar 

  3. Bambusi, D. and Maspero, A., Freezing of Energy of a Soliton in an External Potential, Comm. Math. Phys., 2016, vol. 344, no. 1, pp. 155–191.

    Article  MathSciNet  MATH  Google Scholar 

  4. Duistermaat, J. J., On Global Action–Angle Coordinates, Comm. Pure Appl. Math., 1980, vol. 33, no. 6, pp. 687–706.

  5. Fassò, F., Hamiltonian Perturbation Theory on a Manifold, Celestial Mech. Dynam. Astronom., 1995, vol. 62, no. 1, pp. 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fassò, F., Superintegrable Hamiltonian Systems: Geometry and Perturbations, Acta Appl. Math., 2005, vol. 87, nos. 1–3, pp. 93–121.

    Article  MathSciNet  MATH  Google Scholar 

  7. Féjoz, J. and Kaczmarek, L., Sur le théorème de Bertrand (d’après Michael Herman), Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 5, pp. 1583–1589.

    Article  MathSciNet  MATH  Google Scholar 

  8. Guzzo, M., Chierchia, L., and Benettin, G., The Steep Nekhoroshev’s Theorem, Comm. Math. Phys., 2016, vol. 342, no. 2, pp. 569–601.

    Article  MathSciNet  MATH  Google Scholar 

  9. Guzzo, M. and Morbidelli, A., Construction of a Nekhoroshev Like Result for the Asteroid Belt Dynamical System, Celestial Mech. Dynam. Astronom., 1996/97, vol. 66, no. 3, pp. 255–292.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lochak, P. and Meunier, C., Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theorems, Appl. Math. Sci., vol. 72, New York: Springer, 1988.

    Book  MATH  Google Scholar 

  11. Loshak, P., Canonical Perturbation Theory: An Approach Based on Joint Approximations, Russian Math. Surveys, 1992, vol. 47, no. 6, pp. 57–133; see also: Uspekhi Mat. Nauk, 1992, vol. 47, no. 6(288), pp. 59–140.

    Article  MathSciNet  Google Scholar 

  12. Mishchenko, A. S. and Fomenko, A. T., Generalized Liouville Method of Integration of Hamiltonian Systems, Func. Anal. Appl., 1978, vol. 12, no. 2, pp. 113–121; see also: Funktsional. Anal. i Prilozhen., 1978, vol. 12, no. 2, pp. 46–56.

  13. Nekhoroshev, N.N., Action–Angle Variables and Their Generalization, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 180–198; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 181–198.

    MathSciNet  MATH  Google Scholar 

  14. Nekhoroshev, N. N., An Exponential Estimate of the Stability Time of Near-Integrable Hamiltonian Systems, Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65; see also: Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66.

    Article  MATH  Google Scholar 

  15. Nekhoroshev, N. N., An Exponential Estimate of the Time of Stability of Nearly Integrable Hamiltonian Systems: 2, Trudy Sem. Petrovsk., 1979, no. 5, pp. 5–50 (Russian).

    MathSciNet  Google Scholar 

  16. Niederman, L., Exponential Stability for Small Perturbations of Steep Integrable Hamiltonian Systems, Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 2, pp. 593–608.

    Article  MathSciNet  MATH  Google Scholar 

  17. Niederman, L., Hamiltonian Stability and Subanalytic Geometry, Ann. Inst. Fourier (Grenoble), 2006, vol. 56, no. 3, pp. 795–813.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Bambusi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bambusi, D., Fusè, A. Nekhoroshev theorem for perturbations of the central motion. Regul. Chaot. Dyn. 22, 18–26 (2017). https://doi.org/10.1134/S1560354717010026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717010026

Keywords

Navigation