Skip to main content
Log in

Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Computer verification of hyperbolicity is provided based on statistical analysis of the angles of intersection of stable and unstable manifolds for mechanical systems with hyperbolic attractors of Smale–Williams type: (i) a particle sliding on a plane under periodic kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with parametric excitation of standing-wave patterns by a modulated pump. The examples are of interest as contributing to filling the hyperbolic theory of dynamical systems with physical content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, pp. 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  2. Williams, R. F., Expanding Attractors, Publ. Math. Inst. Hautes Études Sci., 1974, vol. 43, pp. 169–203.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V.Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.

  4. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  5. Afraimovich, V. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., vol. 28, Providence,R.I.: AMS, 2003.

    MATH  Google Scholar 

  6. Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer, 2005.

    MATH  Google Scholar 

  7. Andronov, A. and Pontryagin, L., Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 1937, vol. 14, no. 5, pp. 247–250 (Russian).

    MATH  Google Scholar 

  8. Andronov, A.A., Vitt, A. A., and Khaĭkin, S.E., Theory of Oscillators, New York: Pergamon, 1966.

    MATH  Google Scholar 

  9. Rabinovich M. I. and Gaponov-Grekhov, A.V., Problems of Present-Day Nonlinear Dynamics, Her. Russ. Acad. Sci., 1997, vol. 67, no. 4, pp. 257–262; see also: Vestn. Ross. Akad. Nauk, 1997, vol. 67, no. 7, pp. 608–614.

    MathSciNet  Google Scholar 

  10. Shilnikov, L.P., Shilnikov, A. L., Turaev, D., and Chua, L.O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 1, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 4, River Edge, N.J.: World Sci., 1998.

    Book  MATH  Google Scholar 

  11. Shilnikov, L.P., Shilnikov, A. L., Turaev, D., and Chua, L.O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 5, River Edge,N.J.: World Sci., 2001.

    MATH  Google Scholar 

  12. Afraimovich, V. S., Gonchenko, S.V., Lerman, L.M., Shilnikov, A. L., and Turaev, D. V., Scientific Heritage of L.P. Shilnikov, Regul. Chaotic Dyn., 2014, vol. 19, no. 4, pp. 435–460.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, A.P., Kuznetsov, S.P., and Ryskin, N. M., Nonlinear Oscillations, Moscow: Fizmatlit, 2002 (Russian).

    MATH  Google Scholar 

  14. Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.

    Google Scholar 

  15. Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345–382.

    Article  MathSciNet  MATH  Google Scholar 

  17. Monin, A. S., On the Nature of Turbulence, Sov. Phys. Usp., 1978, vol. 21, no. 5, pp. 429–442; see also: Uspekhi Fiz. Nauk, 1978, vol. 125, no. 5, pp. 97–122.

    Article  Google Scholar 

  18. Letellier, Ch., Chaos in Nature, Singapore: World Sci., 2013.

    Book  MATH  Google Scholar 

  19. Scott, S. K., Chemical Chaos, Oxford: Oxford Univ. Press, 1993.

    Google Scholar 

  20. Thompson, J.M.T. and Stewart, H. B., Nonlinear Dynamics and Chaos, New York: Wiley, 1986.

    MATH  Google Scholar 

  21. Landa, P. S., Nonlinear Oscillations and Waves in Dynamical Systems, Dordrecht: Springer, 1996.

    Book  MATH  Google Scholar 

  22. Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, vol. 27, pp. 379–423, 623–656.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, S.P., Example of a Physical System with a Hyperbolic Attractor of the Smale–Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.

    Article  Google Scholar 

  24. Kuznetsov, S.P. and Seleznev, E.P., Strange Attractor of Smale–Williams Type in the Chaotic Dynamics of a Physical System, J. Exp. Theor. Phys., 2006, vol. 102, no. 2, pp. 355–364; see also: Zh. Èksper. Teoret. Fiz., 2006, vol. 129, no. 2, pp. 400–412.

    Article  MathSciNet  Google Scholar 

  25. Isaeva, O.B., Jalnine, A.Yu., and Kuznetsov, S.P., Arnold’s Cat Map Dynamics in a System of Coupled Nonautonomous van der Pol Oscillators, Phys. Rev. E, 2006, vol. 74, no. 4, 046207, 5 pp.

    Article  Google Scholar 

  26. Kuznetsov, S.P. and Pikovsky, A., Autonomous Coupled Oscillators with Hyperbolic Strange Attractors, Phys. D, 2007, vol. 232, no. 2, pp. 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuznetsov, S.P., Example of Blue Sky Catastrophe Accompanied by a Birth of Smale–Williams Attractor, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2-3, pp. 348–353.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.

    Book  MATH  Google Scholar 

  29. Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.

    Article  Google Scholar 

  30. Kuznetsov, S.P., Plykin Type Attractor in Electronic Device Simulated in MULTISIM, Chaos, 2011, vol. 21, no. 4, 043105, 10 pp.

    Article  MATH  Google Scholar 

  31. Isaeva, O.B., Kuznetsov, S.P., and Mosekilde, E., Hyperbolic Chaotic Attractor in Amplitude Dynamics of Coupled Self-Oscillators with Periodic Parameter Modulation, Phys. Rev. E., 2011, vol. 84, no. 1, 016228, 10 pp.

    Article  Google Scholar 

  32. Isaeva, O.B., Kuznetsov, S.P., Sataev, I.R., Savin, D.V., and Seleznev, E.P., Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a Nonautonomous System of Two Alternately Activated Oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 12, 1530033, 15 pp.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuznetsov, S.P., Ponomarenko, V. I., and Seleznev, E.P., Autonomous System Generating Hyperbolic Chaos: Circuit Simulation and Experiment, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2013, vol. 21, no. 5, pp. 17–30 (Russian).

    Google Scholar 

  34. Jalnine, A.Yu., Hyperbolic and Non-Hyperbolic Chaos in a pair of Coupled Alternately Excited FitzHugh–Nagumo Systems, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 23, nos. 1–3, pp. 202–208.

    Article  MathSciNet  Google Scholar 

  35. Kuznetsov, S.P., Some Mechanical Systems Manifesting Robust Chaos, Nonlinear Dynamics & Mobile Robotics, 2013, vol. 1, no. 1, pp. 3–22.

    Google Scholar 

  36. Kuznetsov, S.P., Hyperbolic Strange Attractors of Physically Realizable Systems, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2009, vol. 17, no. 4, pp. 5–34 (Russian).

    Google Scholar 

  37. Hénon, M., A Two-Dimensional Mapping with a Strange Attractor, Commun. Math. Phys., 1976, vol. 50, no. 1, pp. 69–77.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., How Often Are Chaotic Saddles Nonhyperbolic?, Nonlinearity, 1993, vol. 6, no. 5, pp. 779–798.

    Article  MathSciNet  MATH  Google Scholar 

  39. Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T.E., Strelkova, G. I., Studying Hyperbolicity in Chaotic Systems, Phys. Lett. A, 2000, vol. 270, no. 6, pp. 301–307.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., Characterizing Dynamics with Covariant Lyapunov Vectors, Phys. Rev. Lett., 2007, vol. 99, no. 13, 130601, 4 pp.

    Article  Google Scholar 

  41. Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203, 4 pp.

    Article  MathSciNet  Google Scholar 

  42. Kuznetsov, S.P., Hyperbolic Chaos in Self-Oscillating Systems Based on Mechanical Triple Linkage: Testing Absence of Tangencies of Stable and Unstable Manifolds for Phase Trajectories, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 649–666.

    Article  MathSciNet  Google Scholar 

  43. Kuznetsov, S.P. and Turukina, L. V., Attractors of Smale–Williams Type in Periodically Kicked Model Systems, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2010, vol. 18, no. 5, pp. 80–92 (Russian).

    MATH  Google Scholar 

  44. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application, Meccanica, 1980, vol. 15, pp. 9–30.

    Article  MATH  Google Scholar 

  45. Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.

    Book  MATH  Google Scholar 

  46. Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).

    Google Scholar 

  47. Rayleigh, J.W. S., The Theory of Sound, Volume One, 2nd ed., New York: Dover, 2013.

    MATH  Google Scholar 

  48. Rowland, D.R., Parametric Resonance and Nonlinear String Vibrations, Am. J. Phys., 2004, vol. 72, no. 6, pp. 758–766.

    Article  Google Scholar 

  49. Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S.P., Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source, Phys. Rev. E, 2013, vol. 87, no. 4, 040901(R), 4 pp.

    Article  Google Scholar 

  50. Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S. P., Hyperbolic Chaos in Parametric Oscillations of a String, Nelin. Dinam., 2013, vol. 9, no. 1, pp. 3–10 (Russian).

    Article  Google Scholar 

  51. Kuznetsov, S.P., Kuznetsov, A. S., and Kruglov, V. P., Hyperbolic Chaos in Systems with Parametrically Excited Patterns of Standing Waves, Nelin. Dinam., 2014, vol. 10, no. 3, pp. 265–277 (Russian).

    Article  MATH  Google Scholar 

  52. Sinaĭ, Ya.G., The Stochasticity of Dynamical Systems: Selected Translations, Selecta Math. Soviet., 1981, vol. 1, no. 1, pp. 100–119.

    MathSciNet  Google Scholar 

  53. Kuznetsov, S.P. and Sataev, I.R., Hyperbolic Attractor in a System of Coupled Non-Autonomous van derPol Oscillators: Numerical Test for Expanding and Contracting Cones, Phys. Lett. A, 2007, vol. 365, nos. 1-2, pp. 97–104.

    Article  MATH  Google Scholar 

  54. Wilczak, D., Uniformly Hyperbolic Attractor of the Smale–Williams Type for a Poincaré Map in the Kuznetsov System: With Online Multimedia Enhancements, SIAM J. Appl. Dyn. Syst., 2010, vol. 9, no. 4, pp. 1263–1283.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.P., Kruglov, V.P. Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics. Regul. Chaot. Dyn. 21, 160–174 (2016). https://doi.org/10.1134/S1560354716020027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354716020027

MSC2010 numbers

Keywords

Navigation