Skip to main content
Log in

On the connection of the quadratic Lienard equation with an equation for the elliptic functions

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The quadratic Lienard equation is widely used in many applications. A connection between this equation and a linear second-order differential equation has been discussed. Here we show that the whole family of quadratic Lienard equations can be transformed into an equation for the elliptic functions. We demonstrate that this connection can be useful for finding explicit forms of general solutions of the quadratic Lienard equation. We provide several examples of application of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J. and Clarkson, P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., vol. 149, Cambridge: Cambridge Univ. Press, 1991.

    Book  MATH  Google Scholar 

  2. Borisov, A.V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow: R&C Dynamics, ICS, 2003 (Russian).

    MATH  Google Scholar 

  3. Polyanin, A.D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed., Boca Raton, Fla.: Chapman & Hall/CRC, 2003.

    MATH  Google Scholar 

  4. Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Dynamics of Three Vortex Sources, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 694–701.

    Article  MathSciNet  Google Scholar 

  5. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Dynamics and Control of an Omniwheel Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 153–172.

    Article  MathSciNet  Google Scholar 

  6. Tiwari, A.K., Pandey, S. N., Senthilvelan, M., and Lakshmanan, M., Classification of Lie Point Symmetries for Quadratic Liénard Type Equation ie495-1, J. Math. Phys., 2013, vol. 54, no. 5, 053506, 19 pp.

    Article  MathSciNet  Google Scholar 

  7. Sabatini, M., On the Period Function of x″ +f(x)x2 +g(x) = 0, J. Differential Equations, 2004, vol. 196, no. 1, pp. 151–168.

    Article  MathSciNet  MATH  Google Scholar 

  8. Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., Isochronicity Conditions for Some Planar Polynomial Systems, Bull. Sci. Math., 2011, vol. 135, no. 1, pp. 89–112.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardet, M., Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., Isochronicity Conditions for Some Planar Polynomial Systems: 2, Bull. Sci. Math., 2011, vol. 135, no. 2, pp. 230–249.

    Article  MathSciNet  MATH  Google Scholar 

  10. Guha, P. and Ghose Choudhury, A., The Jacobi Last Multiplier and Isochronicity of Liénard Type Systems, Rev. Math. Phys., 2013, vol. 25, no. 6, 1330009, 31 pp.

    Article  MathSciNet  Google Scholar 

  11. Chouikha, A.R., Isochronous Centers of Liénard Type Equations and Applications, J. Math. Anal. Appl., 2007, vol. 331, no. 1, pp. 358–376.

    Article  MathSciNet  MATH  Google Scholar 

  12. Plesset, M. S. and Prosperetti, A., Bubble Dynamics and Cavitation, Annu. Rev. Fluid Mech., 1977, vol. 9, pp. 145–185.

    Article  Google Scholar 

  13. Kudryashov, N.A. and Sinelshchikov, D. I., Analytical Solutions of the Rayleigh Equation for Empty and Gas-Filled Bubble, J. Phys. A, 2014, vol. 47, no. 40, 405202, 10 pp.

    Google Scholar 

  14. Kudryashov, N.A. and Sinelshchikov, D. I., Analytical Solutions for Problems of Bubble Dynamics, Phys. Lett. A, 2015, vol. 379, no. 8, pp. 798–802.

    Article  MathSciNet  Google Scholar 

  15. Rosenau, P. and Hyman, J., Compactons: Solitons with Finite Wavelength, Phys. Rev. Lett., 1993, vol. 70, no. 5, pp. 564–567.

    Article  MATH  Google Scholar 

  16. Camassa, R. and Holm, D.D., An Integrable Shallow Water Equation with Peaked Solitons, Phys. Rev. Lett., 1993, vol. 71, no. 11, pp. 1661–1664.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nakpim, W. and Meleshko, S.V., Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 2010, vol. 6, Paper 051, 11 pp.

  18. Moyo, S. and Meleshko, S.V., Application of the Generalised Sundman Transformation to the Linearisation of Two Second-Order Ordinary Differential Equations, J. Nonlinear Math. Phys., 2011, vol. 18,suppl. 1, pp. 213–236.

    Article  MathSciNet  Google Scholar 

  19. Hille, E., Ordinary Differential Equations in the Complex Domain, Mineola, N.Y.: Dover, 1997.

    MATH  Google Scholar 

  20. Kudryashov, N.A., Methods of Nonlinear Mathematical Physics, Moscow: Intellekt, 2010 (Russian).

    Google Scholar 

  21. Borisov, A. V. and Kudryashov, N.A., Paul Painlevé and His Contribution to Science, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 1–19.

    Article  MathSciNet  Google Scholar 

  22. Kudryashov, N.A., Higher Painlevé Transcendents as Special Solutions of Some Nonlinear Integrable Hierarchies, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 48–63.

    Article  MathSciNet  Google Scholar 

  23. Borisov, A.V., Erdakova, N.N., Ivanova, T.B., and Mamaev, I. S., The Dynamics of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 607–634.

    Article  MathSciNet  Google Scholar 

  24. Loud, W. S., Behavior of the Period of Solutions of Certain Plane Autonomous Systems Near Centers, Contributions to Differential Equations, 1964, vol. 3, pp. 21–36.

    MathSciNet  Google Scholar 

  25. Vladimirov, V.A., Mşaczka, Cz., Sergyeyev, A., and Skurativskyi, S., Stability and Dynamical Features of Solitary Wave Solutions for a Hydrodynamic-Type System Taking into Account Nonlocal Effects, Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, no. 6, pp. 1770–1782.

    Article  MathSciNet  Google Scholar 

  26. Vakhnenko, V. A., Solitons in a Nonlinear Model Medium, J. Phys. A, 1992, vol. 25, no. 15, pp. 4181–4187.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vakhnenko, V. O. and Parkes, E. J., The Two Loop Soliton Solution of the Vakhnenko Equation, Nonlinearity, 1998, vol. 11, no. 6, pp. 1457–1464.

    Article  MathSciNet  MATH  Google Scholar 

  28. Parkes, E. J., Explicit Solutions of the Reduced Ostrovsky Equation, Chaos Solitons Fractals, 2007, vol. 31, no. 3, pp. 602–610.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Kudryashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, N.A., Sinelshchikov, D.I. On the connection of the quadratic Lienard equation with an equation for the elliptic functions. Regul. Chaot. Dyn. 20, 486–496 (2015). https://doi.org/10.1134/S1560354715040073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715040073

MSC2010 numbers

Keywords

Navigation