Skip to main content
Log in

Analytical solutions of the Lorenz system

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The Lorenz system is considered. The Painlevé test for the third-order equation corresponding to the Lorenz model at σ ≠ 0 is presented. The integrable cases of the Lorenz system and the first integrals for the Lorenz system are discussed. The main result of the work is the classification of the elliptic solutions expressed via the Weierstrass function. It is shown that most of the elliptic solutions are degenerated and expressed via the trigonometric functions. However, two solutions of the Lorenz system can be expressed via the elliptic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E.N., Deterministic Nonperiodic Flow, J. Atmospheric Sci., 1963, vol. 20, no. 2, pp. 130–141.

    Article  Google Scholar 

  2. Giacomini, H. and Neukirch, S., Integrals of Motion and the Shape of the Attractor for the Lorenz Model, Phys. Lett. A, 1997, vol. 227, nos. 5–6, pp. 309–318.

    Article  MATH  MathSciNet  Google Scholar 

  3. Tabor, M. and Weiss, J., Analytic Structure of the Lorenz System, Phys. Rev. A, 1981, vol. 24, no. 4, pp. 2157–2167.

    Article  MathSciNet  Google Scholar 

  4. Borisov, A. V. and Kudryashov, N.A., Paul Painlevé and His Contribution to Science, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 1–19.

    Article  MathSciNet  Google Scholar 

  5. Kudryashov, N.A., Higher Painlevé Transcendents As Special Solutions of Some Nonlinear Integrable Hierarchies, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 48–63.

    Article  MathSciNet  Google Scholar 

  6. Levine, G. and Tabor, M., Integrating the Nonintegrable: Analytic Structure of the Lorenz System Revisited. Progress in Chaotic Dynamics, Phys. D, 1988, vol. 33, nos. 1–3, pp. 189–210.

    Article  MATH  MathSciNet  Google Scholar 

  7. Sen, T. and Tabor, M., Lie Symmetries of the Lorenz Model, Phys. D, 1990, vol. 44, no. 3, pp. 313–339.

    Article  MATH  MathSciNet  Google Scholar 

  8. Goriely, A., Integrability, Partial Integrability, and Nonintegrability for Systems of Ordinary Differential Equations J. Math. Phys., 1996, vol. 37, no. 4, pp. 1871–1893.

    Article  MATH  MathSciNet  Google Scholar 

  9. Polyanin, A.D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2nd ed., Boca Raton, Fla.: CRC Press, 2012.

    Google Scholar 

  10. Malfliet, W. and Hereman, W., The Tanh Method: 1. Exact Solutions of Nonlinear Evolution and Wave Equations, Phys. Scripta, 1996, vol. 54, no. 6, pp. 563–568.

    Article  MATH  MathSciNet  Google Scholar 

  11. Biswas, A., Solitary Wave Solution for the Generalized Kawahara Equation, Appl. Math. Lett., 2009, vol. 22, no. 2, pp. 208–210.

    Article  MATH  MathSciNet  Google Scholar 

  12. Biswas, A. and Konar, S., Introduction to Non-Kerr Law Optical Solitons, Boca Raton, Fla.: Chapman & Hall/CRC, 2007.

    MATH  Google Scholar 

  13. Kudryashov, N.A., Methods of Nonlinear Mathematical Physics, Moscow: Intellekt, 2010 (Russian).

    Google Scholar 

  14. Kudryashov, N.A., Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations, Chaos Solitons Fractals, 2005, vol. 24, no. 5, pp. 1217–1231.

    Article  MATH  MathSciNet  Google Scholar 

  15. Vitanov, N. K., Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling-Wave Solutions for a Class of PDEs with Polynomial Nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 2010, vol. 15, no. 8, pp. 2050–2060.

    Article  MATH  MathSciNet  Google Scholar 

  16. Vitanov, N. K., Jordanov, I.P., and Dimitrova, Z. I., On Nonlinear Population Waves, Appl. Math. Comput., 2009, vol. 215, no. 8, pp. 2950–2964.

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, M., Li, X., and Zhang, J., The (G′/G)-Expansion Method and Evolution Equation in Mathematical Physics, Phys. Lett. A, 2008, vol. 372, no. 4, pp. 417–423.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kudryashov, N.A., A Note on the G′/G-Expansion Method, Appl. Math. Comput., 2010, vol. 217, no. 4, pp. 1755–1758.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kudryashov, N.A., One Method for Finding Exact Solutions of Nonlinear Differential Equations, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 6, pp. 2248–2253.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kudryashov, N.A. and Zakharchenko, A. S., A Note on Solutions of the Generalized Fisher Equation, Appl. Math. Lett., 2014, vol. 32, pp. 53–56.

    Article  MathSciNet  Google Scholar 

  21. Kudryashov, N.A., Painlevé Analysis and Exact Solutions of the Korteweg — de Vries Equation with a Source, Appl. Math. Lett., 2015, vol. 41, pp. 41–45.

    Article  MathSciNet  Google Scholar 

  22. Demina, M.V. and Kudryashov, N.A., From Laurent Series to Exact Meromorphic Solutions: The Kawahara Equation, Phys. Lett. A, 2010, vol. 374, no. 39, pp. 4023–4029.

    Article  MATH  MathSciNet  Google Scholar 

  23. Demina, M.V. and Kudryashov, N.A., Explicit Expressions for Meromorphic Solutions of Autonomous Nonlinear Ordinary Differential Equations, Commun. Nonlinear Sci. Numer. Simul., 2011, vol. 16, no. 3, pp. 1127–1134.

    Article  MATH  MathSciNet  Google Scholar 

  24. Demina, M.V. and Kudryashov, N.A., On Elliptic Solutions of Nonlinear Ordinary Differential Equations, Appl. Math. Comput., 2011, vol. 217, no. 23, pp. 9849–9853.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kudryashov, N.A., Sinelshchikov, D. I., and Demina, M.V., Exact Solutions of the Generalized Bretherton Equation, Phys. Lett. A, 2011, vol. 375, no. 7, pp. 1074–1079.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kudryashov, N.A. and Sinelshchikov, D. I., Exact Solutions of the Swift — Hohenberg Equation with Dispersion, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 1, pp. 26–34.

    Article  MATH  MathSciNet  Google Scholar 

  27. Kudryashov, N.A., Soukharev, M. B., and Demina, M.V., Elliptic Traveling Waves of the Olver Equation, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 11, pp. 4104–4114.

    Article  MATH  MathSciNet  Google Scholar 

  28. Demina, M.V. and Kudryashov, N.A., Elliptic Solutions in the Hénon — Heiles Model, Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, no. 3, pp. 471–482.

    Article  MathSciNet  Google Scholar 

  29. Kudryashov, N.A. and Sinelshchikov, D. I., Special Solutions of a High-Order Equation for Waves in a Liquid with Gas Bubbles, Regul. Chaotic Dyn., 2014, vol. 19, no. 5, pp. 576–585.

    Article  MATH  MathSciNet  Google Scholar 

  30. Borisov, A.V., Erdakova, N.N., Ivanova, T.B., and Mamaev, I. S., The Dynamics of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 607–634.

    Article  MathSciNet  Google Scholar 

  31. Borisov, A.V., Kazakov, A.O., and Sataev, I.R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.

    Article  MathSciNet  Google Scholar 

  32. Kazakov, A. O., Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.

    Article  MATH  MathSciNet  Google Scholar 

  33. Gonchenko, A. S., Gonchenko, S.V., Kazakov, A.O., Richness of chaotic dynamics in nonholonomic models of a celtic stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Kudryashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, N.A. Analytical solutions of the Lorenz system. Regul. Chaot. Dyn. 20, 123–133 (2015). https://doi.org/10.1134/S1560354715020021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715020021

MSC2010 numbers

Keywords

Navigation