Skip to main content
Log in

Integrability of Calogero–Coulomb problems

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In this short review we describe the integrability properties of the Calogero-type perturbations of one- and two-center Coulomb problems and of the Stark–Coulomb problem. We present the explicit expressions of their constants of motion and show that these systems admit partial separation of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Komarov and S. Slavyanov, “The two Coulomb centres problem at large centre separation,” J. Phys. B 1, 1066 (1968)

    Article  ADS  Google Scholar 

  2. Yu. Demkov and I. Komarov, “Hypergeometric partial solutions in the problem of two Coulomb centers,” Theor. Math. Phys. 38, 174 (1979).

    Article  MATH  Google Scholar 

  3. F. Calogero, “Solution of a three-body problem in one dimension,” J. Math. Phys. 10 (1969); “Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials,” J. Math. Phys. 12, 419 (1971).

    Google Scholar 

  4. S. Wojciechowski, “Superintegrability of the Calogero-Moser system,” Phys. Lett. A 95, 279 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Moser, “Three integrable hamiltonian systems connected with isospectral deformations,” Adv. Math. 16, 197 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Olshanetsky and A. Perelomov, “Classical integrable finite dimensional systems related to lie algebras,” Phys. Rep. 71, 313 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. P. Polychronakos, “Physics and mathematics of Calogero particles,” J. Phys. A 39, 12793 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Khare, “Exact solution of an N-body problem in one dimension,” J. Phys. A 29, L45 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Hakobyan, O. Lechtenfeld, and A. Nersessian, “Superintegrability of generalized Calogero models with oscillator or Coulomb potential,” Phys. Rev. D: Part. Fields 90, 101701(R) (2014).

    Article  ADS  Google Scholar 

  10. T. Hakobyan and A. Nersessian, “Runge-Lenz vector in Calogero-Coulomb problem,” Phys. Rev. A 92, 022111 (2015).

    Article  ADS  Google Scholar 

  11. T. Hakobyan and A. Nersessian, “Integrability and separation of variables in Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems,” Phys. Rev. D: Part. Fields 93, 045025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Feigin and T. Hakobyan, “On dunkl angular momenta algebra,” J. High Energy Phys. 11, 107 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Feigin, O. Lechtenfeld, and A. Polychronakos, “The quantum angular Calogero-Moser model,” J. High Energy Phys. 1307, 162 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. T. Hakobyan, A. Nersessian, and V. Yeghikyan, “Cuboctahedric higgs oscillator from the Calogero model,” J. Phys. A 42, 205206 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. F. Correa and O. Lechtenfeld, “The tetrahexahedric angular Calogero model,” J. High Energy Phys. 10, 191 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Hakobyan, D. Karakhanyan, and O. Lechtenfeld, “The structure of invariants in conformal mechanics,” Nucl. Phys. B 886, 399 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T. Hakobyan, S. Krivonos, O. Lechtenfeld, and A. Nersessian, “Hidden symmetries of integrable conformal mechanical systems,” Phys. Lett. A 374, 801 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. T. Hakobyan, O. Lechtenfeld, A. Nersessian, and A. Saghatelian, “Invariants of the spherical sector in conformal mechanics,” J. Phys. A 44, 055205 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. O. Lechtenfeld, A. Nersessian, and V. Yeghikyan, “Action-angle variables for dihedral systems on the circle,” Phys. Lett. A 374, 4647 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. F. Dunkl, “Differential-difference operators associated to reflection groups,” Trans. Am. Math. Soc. 311, 167 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Feigin, “Intertwining relations for the spherical parts of generalized Calogero operators,” Theor. Math. Phys. 135, 497 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. X. Genest, A. Lapointe, and L. Vinet, “The Dunkl-Coulomb problem in the plane,” Phys. Lett. A 379, 923 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Hakobyan, O. Lechtenfeld, and A. Nersessian, “The spherical sector of the Calogero model as a reduced matrix model,” Nucl. Phys. B 858, 250 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. P. J. Redmond, “Generalization of the Runge-Lenz vector in the presence of an electric field,” Phys. Rev. B 133, 1352 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Helfrich, “Constants of motion for separable oneparticle problems with cylinder symmetry,” Theor. Chim. Acta (Berl.) 24, 271 (1972).

    Article  Google Scholar 

  26. L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).

    Google Scholar 

  27. C. Coulson and A. Joseph, “A constant of the motion for the two-centre Kepler problem,” Int. J. Quantum Chem. 1, 337 (1967).

    Article  ADS  Google Scholar 

  28. H. A. Erikson and E. L. Hill, “A note about one-electron states of diatomic molecules,” Phys. Rev. 76, 29 (1949).

    Article  ADS  MATH  Google Scholar 

  29. S. P. Alliluev and A. V. Matveenko, “Symmetry group of the hydrogen molecular ion (A system with separable variables),” Sov. Phys. JETP 24, 1260 (1967).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Nersessian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakobyan, T., Nersessian, A. Integrability of Calogero–Coulomb problems. Phys. Part. Nuclei Lett. 14, 331–335 (2017). https://doi.org/10.1134/S1547477117020133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020133

Navigation