Skip to main content
Log in

On modeling the neutron in classical physics: Methodical review

  • Neutron Physics
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

It is demonstrated that the question of the elementary character of the neutron recently put forward by B.V. Vasil’ev in JINR Comm. P3-2014-77 requires the application of the whole system of logically consistent and experimentally verified knowledge obtained by M. Gryziński in deterministic atomic physics; the inconsistency of the two ideas presented in this work is demonstrated: (1) an electronlike elementary particle in the structure of the neutron which does not possess magnetic properties and (2) the planetary model of the neutron with pointlike elementary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Vasil’ev, “Is neutron an elementary particle?” Soobshch. OIYaI P3-2014-77 (Dubna, 2014) [in Russian].

    Google Scholar 

  2. M. Gryziński, Sprawa Atomu (Homo-Sapiens, Warszawa, 2002) [in Polish].

    Google Scholar 

  3. M. Gryziński, True and False Achievements of Modern Physics (Homo-Sapiens, Warsaw, 1996).

    Google Scholar 

  4. M. Gryziński, “On the nature of atom,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Inst. Mat., Novosibirsk, 2001), No. 2, pp. 135–160 [in Russian].

    Google Scholar 

  5. M. Gryziński, The Atom Exactly: Seven Lectures on Atomic Physics (Editorial URSS, Moscow, 2005) [in Russian].

    Google Scholar 

  6. A. V. Levichev, “Segal’s chronometry: emergence of the theory, its application to the physics of particles and interactions, development prospects,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Geo, Novosibirsk, 2010), No. 7, pp. 69–99 [in Russian].

    Google Scholar 

  7. M. Gryziński, “Classical theory of electronic and ionic inelastic collisions,” Phys. Rev. 115, 374–383 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Gryziński, “Two-particle collisions. I. General relations for collisions in the laboratory system,” Phys. Rev. A 138, 305–321 (1965).

    Article  MathSciNet  Google Scholar 

  9. M. Gryziński, “Two-particle collisions. II. Coulomb collisions in the laboratory system of coordinates,” Phys. Rev. A 138, 322–335 (1965).

    Article  MathSciNet  Google Scholar 

  10. M. Gryziński, “Classical theory of atomic collisions. I. Theory of inelastic collisions,” Phys. Rev. A 138, 336–358 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. F. Helbig and E. Everhart, “Measurements of resonant electron capture in close H+-on-H collisions,” Phys. Rev. A 140, 715–720 (1965).

    Article  ADS  Google Scholar 

  12. M. Gryziński, M. Kowalski, and M. Wlazl[slash]o, “Electron capture in the p+ H head-on collisions and classical dynamics, in True and False Achievements of Modern Physics (Homo-Sapiens, Warsaw, 1996), pp. 52–59.

    Google Scholar 

  13. M. Gryziński and A. Okopin’ska, “Ejection of electrons by protons from helium for free-fall atomic model,” in Proceedings of 8th International Conference on Photonic, Electronic and Atomic Collisions VIII ICPEAC, Belgrad, 1973, pp. 635–636.

    Google Scholar 

  14. M. E. Rudd, C. A. Sautter, and C. L. Bailey, “Energy and angular distributions of electrons ejected from hydrogen and helium by 100- to 300-KeV protons,” Phys. Rev. 151, 20–27 (1966).

    Article  ADS  Google Scholar 

  15. M. Gryziński, J. Kunc, and M. Zgorzelski, “Threebody analysis of electron — hydrogen atom collisions,” J. Phys. B: At. Mol. Opt. Phys. 6, 2292–2302 (1973).

    Article  ADS  Google Scholar 

  16. M. Grysin-ski and M. Kowalski, “Alignment of hydrogen atoms in e+ and e- ionising collisions,” Phys. Lett. A 200, 360–364 (1995).

    Article  ADS  Google Scholar 

  17. W. L. Fite and R. T. Brackmann, “Collisions of electrons with hydrogen atoms. I. Ionization,” Phys. Rev. 112, 1141–1151 (1958).

    Article  ADS  Google Scholar 

  18. M. B. Shah, D. S. Elliott, and H. B. Gilbody, “Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact,” J. Phys. B: At. Mol. Phys. 20, 3501–3514 (1987).

    Article  ADS  Google Scholar 

  19. C. Ramsauer and R. Kollath, “Angle dispersion in the diffusion of slow electrons in gas molecules. II. Continuation,” Ann. Phys. (N.Y.) 12, 529–561 (1932).

    Article  ADS  Google Scholar 

  20. R. B. Brode, “The absorption coefficient for slow electrons in gases,” Phys. Rev. 25, 636–644 (1925).

    Article  ADS  Google Scholar 

  21. H. F. Mayer, “The behaviour of molecules compared with free slow electrons,” Ann. Phys. B 64, 451–480 (1921).

    Article  ADS  Google Scholar 

  22. M. Gryziński, “On the physical nature of Planck’s constant, the electron and proton,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Geo, Novosibirsk, 2008), No. 6, pp. 68–79 [in Russian].

    Google Scholar 

  23. M. Gryziński, “On the nature of interatomic interactions and location of conduction electrons,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Geo, Novosibirsk, 2010), No. 7, pp. 100–109 [in Russian].

    Google Scholar 

  24. P. Grujić and N. Simonović, “Insights from the classical atom,” Phys. Today 65 (5), 40–46 (2012).

    Article  ADS  Google Scholar 

  25. M. Grysin-ski, “Free-fall’ solution of the Kepler problem in the presence of the magnetic moment,” Phys. Lett. A 41, 69–70 (1972).

    Article  ADS  Google Scholar 

  26. M. Gryziński, “Spin-dynamical theory of the wavecorpuscular duality,” Int. J. Theor. Phys. 26, 967–980 (1987).

    Article  Google Scholar 

  27. V. V. Vikhrev, “Description of wave properties of the particle using classical physics laws,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Geo, Novosibirsk, 2010), No. 7, pp. 110–123 [in Russian].

    Google Scholar 

  28. N. I. Kondakov, Logical Dictionary–Handbook (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  29. N. G. Chetaev, Stability of the Motion. Works on Analytical Mechanics (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  30. I. A. Eganova, “Comments to the modeling of nuclear transforms in S. Ch. Mavrodiev’s and V. D. Rusov’s works,” in Search of Mathematical Laws of Universe: Physical Ideas, Approaches, Concepts (Geo, Novosibirsk, 2010), No. 7, pp. 124–131 [in Russian].

    Google Scholar 

  31. E. Schrödinger, “Are there quantum jumps?,” Brit. J. Philos. Sci. 3, 233–247 (1952).

    Article  ADS  Google Scholar 

  32. A. Einstein, “On the method of theoretical physics,” Philos. Sci. 1, 163–169 (1934).

    Article  Google Scholar 

  33. V. F. Weisskopf, “Summary of the conference,” in Proceedings of the International Conference on Nuclear Structure, Kingston, Canada, August 29–September 3, 1960, Ed. by D. A. Bromley and E. W. Vogt (Univ. of Toronto, Toronto, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Eganova.

Additional information

Original Russian Text © I.A. Eganova, W. Kallies, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eganova, I.A., Kallies, W. On modeling the neutron in classical physics: Methodical review. Phys. Part. Nuclei Lett. 13, 257–266 (2016). https://doi.org/10.1134/S1547477116020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477116020096

Keywords

Navigation