Skip to main content
Log in

Mariinskite, BeCr2O4, a new mineral, chromium analog of chrysoberyl

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

A new mineral, mariinskite, BeCr2O4, the chromium analog of chrysoberyl, has been found at the Mariinsky (Malyshevo) deposit, the Ural Emerald Mines, the Central Urals, Russia. The mineral is named after its type locality. It was discovered in chromitite in association with fluorphlogopite, Cr-bearing muscovite, eskolaite, and tourmaline. Mariinskite occurs as anhedral grains ranging from 0.01 to 0.3 mm in size; in some cases it forms pseudohexagonal chrysoberyl-type twins. The mineral is dark-green, with a pale green streak; the Mohs’ hardness is 8.5, microhardness VHN = 1725 kg/mm2. D meas = 4.25(2) g/cm3, D calc = 4.25 g/cm3. Microscopically, it is emerald-green, pleochroic from emerald-green (γ) to yellow-green (β) and greenish yellow (α). The new mineral is biaxial (+), γ = 2.15(1), β = 2.09(3), and α = 2.05(1), 2V meas = 80 ± (10)°, 2V calc = 80.5°. In reflected light, it is gray with green reflections; R max (589) = 12.9%; R min (589) = 12.3%, and there are strong, internal green reflections. The strongest absorption bands in the IR spectrum are as follows (cm−1): 935, 700, 614, 534. Space group Pnma, a = 9.727(3), b = 5.619(1), c = 4.499(1) Å, V = 245.9(3) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern are as follows (d Å, I, hkl): 4.08(40)(101), 3.31(90)(111), 2.629(50)(301), 2.434(50)(220), 2.381(40)(311), 2.139(60)(221), 1.651(100)(222). The average chemical composition of mariinskite (electron microprobe, wt %) is as follows: BeO 16.3, Al2O3 23.89, Cr2O3 58.67, Fe2O3 0.26, V2O3 0.26, TiO2 0.61, total is 99.98. The empirical formula, calculated on the basis of four O atoms is Be1.03(Cr1.22Al0.74Ti0.01Fe0.01V0.01)1.99O4. The compatibility index 1 − (Kp/Kc), 0.019, is excellent. The type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, and the Ural Geological Museum, Yekaterinburg, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avdeev, I.V., On glucine and its compounds, Gorny Zh., 1842, pt. 3, book 9, pp. 361–391.

    Google Scholar 

  • Avdonin, V.N. and Polenov, Yu.A., Ocherki ob ural’skikh mineralakh (Essays on Ural minerals) Yekaterinburg: UGGGA, 2004.

    Google Scholar 

  • Basilio, M.S., Pedrosa-Soares, A.C., and Jordt-Evangelista, H., Depositos de alexandrita de Malacacheta, Minas Gerais, Geonomos, 2000. vol. 8, no. 1, pp. 47–54.

    Google Scholar 

  • Beskin, S.M. and Marin, Yu.B., Polygenetic rare-metal mineralization in the granitic ore-magmatic systems, Zap. Vseross. Mineral. O-va, 1998, vol. 127, no. 2, pp. 41–54.

    Google Scholar 

  • Bidny, A.S., Mineralogy, age, and genesis of beryllium occurrences in the Ural emerald belt, Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow: Moscow State Univ., 2012.

    Google Scholar 

  • Bragg, W.L. and Brown, G.B. The crystalline structure of chrysoberyl, Proc. Roy. Soc. London. A, 1926. vol. 110, no. 573. pp. 34–63.

    Article  Google Scholar 

  • Bukin, G.V., Matrosov, V.N., Orechova, V.P., et al., Growth of alexandrite crystals and investigation of their properties, J. Cryst. Growth., 1981, vol. 52, pp. 537–541.

    Article  Google Scholar 

  • Clark, C.M., Hawthorne, F.C., and Ottolini L., Fluordravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral of the tourmaline group from the Crabtree Emerald Mine, Mitchell County, North Carolina: description and crystal structure, Can. Mineral., 2011, vol. 49, pp. 57–62.

    Article  Google Scholar 

  • Cline, C. F., Morris, R.C, Dutoit M., and Harget, P.J., Physical properties of BeAl2O4 single crystals, J. Mater. Sci., 1979, vol. 14, pp. 941–944.

    Google Scholar 

  • Downes, P.J. and Bevan, W.R. Chrysoberyl, beryl and zincian spinel mineralization in granulite-facies Archaean rocks al Dowerin, Western Australia, Mineral. Mag., 2002. vol. 66. pp. 985–1002.

    Article  Google Scholar 

  • Dudka, A.P., Sevast’yanov, B.K., and Simonov, V.I., Refinement of the atomic structure of alexandrite, Krystalografiya, 1985, vol. 30, pp. 605–609.

    Google Scholar 

  • Eremin, N.I., Atomistic modeling of the crystal structures of minerals, defects, and solid solutions, Extended Abstract of Doctoral (Chem.) Dissertation, Moscow: Moscow State Univ., 2009.

    Google Scholar 

  • Farrell, E.F., Fang, J.H., and Hewnham, R.E. Refinement of the chrysoberyl structure, Am. Mineral., 1963, vol. 48, pp. 804–810.

    Google Scholar 

  • Fershtater, G.B., Gerdes, A., and Smirnov, V.N., Age and formation history of the Adui granitic pluton, in Ezhegodnik-2002 (Yearbook-2002), Yekaterinburg: Inst. Geol. Geochem, Ural Branch, Russian Acad. Sci., 2003, pp. 146–150.

    Google Scholar 

  • Fersman, A., Über das färbende Pigment der Smaragde, Dokl. AN SSSR-A, 1926, no. 2, pp. 24–25.

    Google Scholar 

  • Fersman, A.E., Dragotsennye i tsvetnye kamni Rossii. Monografii KEPS (Precious and gem stones of Russia. Monographs of KEPS), Petrograd: 4th State Typography, 1920.

    Google Scholar 

  • Fersman, A.E., Pegmatity, T. 1: Granitnye pegmatity (Pegmatites, Vol. 1: Granitic pegmatites), Moscow-Leningrad: Akad. Nauk SSSR, 1940.

    Google Scholar 

  • Fersman, A.E., Emeralds of the Urals, Priroda, 1913, December, pp. 91–93.

    Google Scholar 

  • Fersman, A.E., Files on Emerald mines, in Izumrudnye kopi na Urale. Sb. statei i materialov. Materialy KEPS (Proceeding of KEPS: Emerald mines in the Urals), Petrograd: Rus. Acad. Sci., 1923, issue 46, pp. 5–22.

    Google Scholar 

  • Franz, G., Gilg, H.A., Grundmann, G., and Morteani, G., Metasomatism at a granitic pegmatite-dunite contact in Galicia: the Franqueira occurrence of chrysoberyl (alexandrite), emerald and phenakite: discussion, Can. Mineral., 1996, vol. 34, pp. 1329–1331.

    Google Scholar 

  • Geology and mineral resources of the states of India. Part IX — Kerala, Geol. Survey India. Miscellaneous Publication, 2005, no. 30.

  • Gübelin, E. Alexandrite from Lake Manyara, Tanzania, Gems Gemol., 1976, vol. 15, no 7, pp. 203–209.

    Google Scholar 

  • Ginzburg, A.I., Pneutomatolitic-hydrothermal beryllium deposits, Geologiya mestorozhdenii redkikh elementov, 1959, issue 4, pp. 4–13.

    Google Scholar 

  • Gromalova, N.A., Solution and melt crystallization and comprehensive study of the composition, crystal morphology and properties of chrysoberyl and alexandrite, Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow: Moscow State Univ., 2010.

    Google Scholar 

  • Gromalova, N.A., Eremin, N.N., and Urusov, V.S., Atomistic modeling of the mixing properties and local structure of Be(Al,Cr,FeIII)2O4 solid solutions, Glass Phys. Chem., 2011, vol. 37, no. 3, pp. 293–306.

    Article  Google Scholar 

  • Henry, D., Novák, M., Hawthorne F.C., et al., Nomenclature of the tourmaline supergroup minerals, Am. Mineral., 2011, vol. 96, pp. 895–913.

    Article  Google Scholar 

  • Hofmeister, A.M., Hoering, T. C., Virgo D., Vibrational spectroscopy of beryllium aliminosilicates: heat capacity calculations from band assignments Phys. Chem. Mineral., 1987, vol. 14, pp. 205–224.

    Article  Google Scholar 

  • Krasnobaev, A.A., Fershtater, G.B., Bea, F., and Montero, P., Polygenetic zircons in the Adui batholith, the Central Urals, Dokl. Earth Sci., 2006, vol. 410, no. 7, pp. 1096–1100.

    Article  Google Scholar 

  • Kupriyanova, I.I. Points of dispute in genesis of the Malyshevo (Mariinsky) beryllium-emerald deposit, the Central Urals, in Materialy Ural’skoi letnei mineralogicheskoi shkoly-2003 (Proc. Ural summer mineralogical school2003), Yekaterinburg, 2003, pp. 37–59.

    Google Scholar 

  • Mallard, M.Er., Sur quelques substances cristallisées préeparées par Ebelmen, Bull. Soc. Franc. Minéral., 1888, vol. 11, no. 8, pp. 305–311.

    Google Scholar 

  • Merino, E., Villaseca, C., Pérez-Soba, C., and Orejana, D. First occurrence of gahnite and chrysoberyl in an Iberian Hercynian pluton: the Belvís de Monroy Granite (NE Cáceres, Spain), Revista Soc. Espán. Mineral., 2010. vol. 13, no. 10. pp. 159–160.

    Google Scholar 

  • Newnham, R., Santoro, R., Pearson, J., and Jansen, C., Ordering of Fe and Cr in chrysoberyl, Am. Mineral., 1964, vol. 49, pp. 427–430.

    Google Scholar 

  • Plaksenko, A.N., Tipomorfizm aktsessornykh khromshpinelidov ul’tramafit-mafitovykh magmaticheskikh formatsii (Typomorphism of accessory Cr-spinels of ultramaficmafic igneous associations), Voronezh: Voronezh State Univ, 1989.

    Google Scholar 

  • Plyusnina, I.I., Infrared absorbance spectra of beryllium minerals, Geokhimiya, 1963, vol. 1, no. 2, pp. 158–173.

    Google Scholar 

  • Popov, M.P., Zhernakov, V.I., Zolotukhin, F.F., and Samsonov, A.V., Ural’skie Izumrudnye kopi. Istoriya izucheniya, geologicheskii ocherk, mineralogicheskii kadastr, bibliografiya, 2nd Ed. (Ural Emerald Mines. History of study, geological essay, mineralogical cadastre, and bibliography, 2nd Ed., Yekaterinburg: UGGGA, 2008.

    Google Scholar 

  • Povarennykh, A.S. The use of infrared spectra for the determination of minerals, Am. Mineral., 1978, vol. 63, pp. 956–959.

    Google Scholar 

  • Povarennykh, A.S., Relationship of IR spectra of minerals to crystal chemical factors, Mineral. Sb., 1970, no. 24, pp. 12–29.

    Google Scholar 

  • Rabadanov, M.Kh. and Dudka, A.P., On localization of impurity chromium ions in alexandrite, Crystall. Rep., 1998, vol. 43. no. 6, pp. 991–994.

    Google Scholar 

  • Rager, H., Bakhshand-Khiri, A., and Schmetzer K. Investigation of the intracrystalline Cr3+ distribution in natural and synthetic alexandrites, N. Jb. Miner. Mh., 1998, vol. 2, pp. 545–557.

    Google Scholar 

  • Rose G. IV. Beschreibung einiger neuen Mineralien des Urals. 7) Ueber den Chrysoberyll von Ural, Ann. Phys. Chem., 1839, vol. 48, pp. 570–573.

    Google Scholar 

  • Sakhnov, A.A., Some typomorphic features of Cr-spinels and chrome ores, Razvedka Okhrana Nedr, 2008, no. 8, pp. 21–25.

    Google Scholar 

  • Santoro, R.P. and Newnham, R.E., Magnetic properties of chromium chrysoberyl, J. Amer. Ceram. Soc., 1964. vol. 47, no. 10. pp. 491–492.

    Article  Google Scholar 

  • Scalvi, R.M.F., Li, M.S., and Scalvi, L.V.A., Thermal annealing-induced electric dipole relaxation in natural alexandrite, Phys. Chem. Mineral., 2005, vol. 31, pp. 733–737.

    Article  Google Scholar 

  • Schmetzer K., Bank H., and Gübelin, E., The alexandrite effect in minerals: chrysoberyl, garnet, corundum, fluorite, N. Jb. Miner. Abh., 1980, vol. 138, no 2, pp. 147–164.

    Google Scholar 

  • Schmetzer, K. Russian alexandrites, Stuttgart: Schweizbart, 2010.

    Google Scholar 

  • Schmetzer, K., Stocklmayer, S., Stocklmayer, V., and Malsy A.-K. Alexandrites from the Novello alexandriteemerald deposit, Masvingo District, Zimbabwe, Austral. Gemmol., 2011, vol. 24, no 6, pp. 133–147.

    Google Scholar 

  • Sherstyuk, A.I., Sludite’s (phlogopite schists’) complexes and their classification, Zap. VMO, 1965, vol. 94, no. 1, pp. 62–70.

    Google Scholar 

  • Shubin, P.I., Report of the Yekaterinburg laboratory for the September third, 1842, Gorny Zh., 1843, book III, pp. 269–296.

    Google Scholar 

  • Smirnov, V.N., Ivanov, K.S., Krasnobaev, A.A., et al., Results of K-Ar dating of the Adui granitic pluton, eastern slope of the Middle Urals, Litosfera, 2006, no. 2, pp. 148–156.

    Google Scholar 

  • Soman, K. and Nair, N.G.K., Genesis of chrysoberyl in the pegmatites of southern Kerala, India, Mineral. Mag., 1985, vol. 49, pp. 733–738.

    Article  Google Scholar 

  • Spiridonov, E.M., Barsukova, N.S., Baksheev, I.A., et al., Transformation of primary Cr-spinels of ultramafic rocks of the Bazhenovsky, Karabashsky, Shabrovsky, Saranovsky, and Nuralinsky massifs and small bodies of the Berezovskoye and Gumbeiskoye deposits of the Urals, in Ural’skaya letnyaya mineralogicheskaya shkola-97 (Ural summer mineralogical school-97) Yekaterinburg, 1997, pp. 23–27.

    Google Scholar 

  • Trindade, N.M., Scalvi, R.M.F., and Scalvi, L.V.A., Cr3+ distribution in Al1 and Al2 sites of alexandrite (BeAl2O4: Cr3+) induced by annealing, investigated by optical spectroscopy, Energy Power Eng., 2010, Febr., pp. 18–24.

    Google Scholar 

  • Urusov, V.S., Gromalova, N.A., Vyatkin, S. V. et al., Study of structural and valence state of Cr and Fe in chrysoberyl and alexandrite with EPR and Mössbauer spectroscopy, Moscow Univ. Geol. Bull., 2011, vol. 66, no. 2, pp. 102–107.

    Article  Google Scholar 

  • Vertushkov, G.N., Chromite and fuchsite of the Emerald mines, Tr. Sverdlovsky Mining Inst., 1937, issue 3, pp. 11–13.

    Google Scholar 

  • Vinnik, D.A., Archugov, S.A., Mikhailov G.G., et al., Kiropoulos process for alexandrite single crystal growth with resistive heating, Doklady Phys. Chem., 2008, vol. 420,part 2, pp. 128–129.

    Article  Google Scholar 

  • Vlasov, K.A. and Kutukova, E.I., Izumrudnye kopi (Emerald mines), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  • Von Pott, H.A.G. Geschichte und Wissenchaftliche Beschaftigungen der in St. Petersburg gestifteten Russisch-Kaiserlichen Gesellschaft fur die Gesammte Mineralogie von 1817 bis 1842, in Schriften der in St.-Petersburg gestifteten Russisch-Kaiserlichen Gesellschaft für die Gessammte Mineralogie, 1842. Bd 1, Abt. 1, pp. 116–129.

    Google Scholar 

  • Waldschmidt, W.A. and Gaines, R.V., Occurrence of chrysoberyl near Golden, Colorado, Am. Mineral., 1939, vol. 24, pp. 267–271.

    Google Scholar 

  • Weir, C.E. and van Valkenburg, A., Studies of beryllium chromite and other beryllium compounds with R2O3 oxides, J. Res. Nat. Bur. Stand.-A. Phys. and Chem., 1960, vol. 64A, pp. 103–06.

    Article  Google Scholar 

  • Zhernakov, V.I., Izumrudnye kopi. Izumrud. Aleksandrit. Fenakit. Ontogeniya i filogeniya (Emerald mines. Emerald. Alexandrite, Phenakite. Ontogeny and phylogeny), Yekaterinburg: UGGU, 2011.

    Google Scholar 

  • Zhernakov, V.I., Typomorphic features of phlogopite from the emerald-bearing parts of ultramafic glimmerite veins, in Mineralogiya i pertographiya Urala (Mineralogy and Petrography of the Urals) Sverdlovsk: Sverdlovsk Mining Inst, 1976, issue 3, pp. 83–86.

    Google Scholar 

  • Zolotukhin, F.F., Mariinskoe (Malyshevskoe) mestorozhdenie izumruda, Sredny Ural (Mariinskoye (Malyshevo) emerald deposit, the Central Urals), St. Petersburg: St. Petersburg State Univ., 1996.

    Google Scholar 

  • Zolotukhin, F.F., The emerald distribution in the Malyshevskoe deposit, Russia, Geol. Ore Dep., 1999, vol. 41, no. 5, pp. 398–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pautov.

Additional information

Original Russian Text © L.A. Pautov, M.P. Popov, Yu.V. Erokhin, V.V. Khiller, V.Yu. Karpenko, 2012, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2012, No. 6, pp. 43–62.

A new mineral, mariinskite, and its name were recommended by the Commission on New Minerals Russian Mineralogical Society and approved by the Commission on New Minerals, Nomenclature, and Mineral Classification of the International Mineralogical Association on September 1, 2011 (IMA no. 2011-057.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pautov, L.A., Popov, M.P., Erokhin, Y.V. et al. Mariinskite, BeCr2O4, a new mineral, chromium analog of chrysoberyl. Geol. Ore Deposits 55, 648–662 (2013). https://doi.org/10.1134/S1075701513080096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701513080096

Keywords

Navigation