Skip to main content
Log in

Functional composites based on polybenzimidazole and graphite nanoplates

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A procedure was developed for preparing stable dispersions of graphite nanoplates with the concentration of up to 25 mg mL–1 by two-step ultrasonic treatment of graphite in N-methyl-2-pyrrolidone. A series of elastic films based on poly-2,2′-p-oxydiphenylene-5,5′-bisdibenzimidazole oxide with the filler content of up to 45 wt % were prepared from such dispersions. Introduction of the nanoadditive into the matrix of the heterocyclic polymer results in 47% enhancement of the tensile strength of the materials and in an increase in the temperature of the 10% weight loss by 52–81°C. In addition, the films are characterized by high electrical conductivity reaching 480 S cm–1 for the composite with 45 wt % graphite nanoplates and exhibit tensoresistive properties, which allows using them in various electrotechnical devices and fabric engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul, D.R. and Robeson, L.M., Polymer, 2008, vol. 49, no. 15, pp. 3187–3204.

    Article  CAS  Google Scholar 

  2. Jordan, J., Jacob, K.I., Tannenbaum, R., et al., Mater. Sci. Eng. A, 2005, vol. 393, nos. 1–2, pp. 1–11.

    Article  Google Scholar 

  3. Antunes, M. and Velasco, J.I., Progr. Polym. Sci., 2014, vol. 39, pp. 486–509.

    Article  CAS  Google Scholar 

  4. Li, N., Zhang, Q., Gao, S., et al., Sci. Rep., 2013, vol. 3, p. 1604.

    Google Scholar 

  5. Li, N., Zhang, X., Song, Q., et al., Biomaterials, 2011, vol. 32, no. 35, pp. 9374–9382.

    Article  CAS  Google Scholar 

  6. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovleva, E.V., Russ. J. Appl. Chem., 2006, vol. 79, no. 11, pp. 1741–1751.

    Article  CAS  Google Scholar 

  7. Li, J., Lin, H., Zhao, W., and Chen, G., J. Appl. Polym. Sci., 2008, vol. 109, no. 3, pp. 1377–1380.

    Article  CAS  Google Scholar 

  8. Fan, H., Wang, L., Zhao, K., et al., Biomacromolecules, 2010, vol. 11, no. 9, pp. 2345–2351.

    Article  CAS  Google Scholar 

  9. Ramanathan, T., Stankovich, S., Dikin, D.A., et al., J. Polym. Sci. B, 2007, vol. 45, no. 8, pp. 2097–2112.

    Article  CAS  Google Scholar 

  10. See, C.H. and Harries, A.T., Ind. Eng. Chem. Res., 2007, vol. 46, no. 4, pp. 997–1012.

    Article  CAS  Google Scholar 

  11. Nozaki, T. and Okazaki, K., Plasma Process. Polym., 2008, vol. 5, no. 4, pp. 300–321.

    Article  Google Scholar 

  12. Scott, C.D., Arepalli, S., Nikolaev, P., and Smalley, R.E., Appl. Phys. A, 2001, vol. 72, no. 5, pp. 573–580.

    Article  CAS  Google Scholar 

  13. Viculis, L.M., Mack, J.J., Mayer, O.M., et al., J. Mater. Chem., 2005, vol. 15, pp. 974–978.

    Article  CAS  Google Scholar 

  14. Cho, D., Lee, S., Yang, G., et al., Macromol. Mater. Eng., 2005, vol. 290, no. 3, pp. 179–187.

    Article  CAS  Google Scholar 

  15. Lu, Y., Chen, J., Cui, H., and Zhou, H., Compos. Sci. Technol., 2008, vol. 68, nos. 15–16, pp. 3278–3284.

    Article  CAS  Google Scholar 

  16. Chuang, S., Hsu, S.L., and Hsu, C., J. Power Sources, 2007, vol. 168, no. 1, pp. 172–177.

    Article  CAS  Google Scholar 

  17. Okamoto, M., Fujigaya, T., and Nakashima, N., Adv. Funct. Mater., 2008, vol. 18, no. 12, pp. 1776–1782.

    Article  CAS  Google Scholar 

  18. Shao, H., Shi, Z., Fang, J., and Yin, J., Polymer, 2009, vol. 50, no. 25, pp. 5987–5995.

    Article  CAS  Google Scholar 

  19. Eaton, P.E., Carlson, G.R., and Lee, J.T., J. Org. Chem., 1973, vol. 38, no. 23, pp. 4071–4073.

    Article  CAS  Google Scholar 

  20. Ueda, M., Sato, M., and Mochizuki, A., Macromolecules, 1985, vol. 18, no. 12, pp. 2723–2726.

    Article  CAS  Google Scholar 

  21. Texter, J., Curr. Opin. Colloid Interface Sci., 2014, vol. 19, pp. 163–174.

    Article  CAS  Google Scholar 

  22. Hernandez, Y., Nicolosi, V., Lotya, M., et al., Nature Nanotechnol., 2008, vol. 3, pp. 563–568.

    Article  CAS  Google Scholar 

  23. Khan, U., O’Neill, A., Lotya, M., et al., Small, 2010, vol. 6, no. 7, pp. 864–871.

    Article  CAS  Google Scholar 

  24. Khan, U., Porwal, H., O’Neill, A., et al., Langmuir, 2011, vol. 27, no. 15, pp. 9077–9082.

    Article  CAS  Google Scholar 

  25. Li, B. and Zhong, W.-H., J. Mater. Sci., 2011, vol. 46, pp. 5595–5614.

    Article  CAS  Google Scholar 

  26. Klokova, N.P., Tenzorezistory: Teoriya, metodiki rascheta, razrabotki (Tensoresistors: Theory, Calculation Procedures, Developments), Moscow: Mashinostroenie, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ch. Kholkhoev.

Additional information

Original Russian Text © B.Ch. Kholkhoev, E.N. Gorenskaya, S.A. Bal’zhinov, I.A. Farion, G.N. Batorova, A.V. Nomoev, P.S. Timashev, B.R. Radnaev, R.K. Chailakhyan, V.E. Fedorov, V.F. Burdukovskii, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 5, pp. 647-653.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholkhoev, B.C., Gorenskaya, E.N., Bal’zhinov, S.A. et al. Functional composites based on polybenzimidazole and graphite nanoplates. Russ J Appl Chem 89, 780–786 (2016). https://doi.org/10.1134/S1070427216050153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216050153

Navigation