Skip to main content
Log in

Composition, temperature, and thickness of the lithosphere of the Archean Kaapvaal craton

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ∼200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ∼275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Alfé, G. D. Price, and M. J. Gillan, “Oxygen in the Earth’ls Core: A First Principle Study,” Phys. Earth. Planet. Inter. 110, 191–210 (1999).

    Article  Google Scholar 

  2. D. L. Anderson, “Speculations on the Nature and Cause of Mantle Heterogeneity,” Tectonophysics 416, 7–22 (2006).

    Article  Google Scholar 

  3. I. M. Artemieva, “Global 1° × 1° Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution,” Tectonophysics 416, 245–277 (2006).

    Article  Google Scholar 

  4. I. M. Artemieva and W. D. Mooney, “Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study,” J. Geophys. Res. 106(B8), 16387–16414 (2001).

    Article  Google Scholar 

  5. I. M. Artemieva, M. Billien, J.-J. Lévéque, and W. D. Mooney, “Shear Wave Velocity, Seismic Attenuation, and Thermal Structure of the Continental Upper Mantle,” Geophys. J. Int. 157, 607–628 (2004).

    Article  Google Scholar 

  6. E. V. Artyushkov, Geodynamics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  7. M. Bizzaro and R. K. Stevenson, “Major Element Composition of the Lithospheric Mantle under the North Atlantic Craton: Evidence from Periodotite Xenoliths of the Sarfartoq Area, Southwestern Greenland,” Contrib. Mineral. Petrol. 146, 223–240 (2003).

    Article  Google Scholar 

  8. F. R. Boyd, “High-and Low-Temperature Garnet Peridotite Xenoliths and Their Possible Relation to the Lithosphere-Asthenosphere Boundary beneath Southern Africa,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, New York, 1987), pp. 403–412.

    Google Scholar 

  9. F. R. Boyd and S. A. Mertzman, “Composition and Structure of the Kaapvaal Lithosphere, Southern Africa,” in Magmatic Processes: Physiochemical Principles, Ed. by P. H. Nixon (Geochem. Soc. Special Publ., 1987), pp. 13–24.

  10. F. Cammarano, S. Goes, P. Vacher, and D. Giardini, “Inferring Upper-Mantle Temperatures from Seismic Velocities,” Phys. Earth Planet. Inter. 138, 197–222 (2003).

    Article  Google Scholar 

  11. C. De Capitani and T. H. Brown, “The Computation of Equilibrium in Complex Systems Containing Non-Ideal Solutions,” Geochim. Cosmochim. Acta 51, 2639–2652 (1987).

    Article  Google Scholar 

  12. D. A. Carswell and F. G. F. Gibb, “Evaluation of Mineral Thermometers and Barometers Applicable to Garnet Lherzolite Assemblages,” Contrib. Mineral. Petrol. 95, 499–511 (1987).

    Article  Google Scholar 

  13. M. J. De Wit, C. Roering, R. J. Hart, et al., “Formation of Archaean Continent,” Nature 357, 553–562 (1992).

    Article  Google Scholar 

  14. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (SO RAN, Filial “GEO,” Novosibirsk, 2001) [in Russian].

    Google Scholar 

  15. A. Dziewonski and D. L. Anderson, “Preliminary Reference Earth Model,” Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  16. A. V. Egorkin, “Mantle Structure of the Siberian Platform,” Fiz. Zemli, No. 5, 37–46 (2004) [Izvestiya, Phys. Solid Earth 40, 385–394 (2004).

  17. O. B. Fabrichnaya and O. L. Kuskov, “Constitution of the Earth’ls Mantle: 1. Phase Relations for the FeO-MgO-SiO2 System at Pressure 10–30 GPa,” Phys. Earth Planet. Inter. 69, 56–71 (1991).

    Article  Google Scholar 

  18. U. H. Faul and I. Jackson, “The Seismological Signature of Temperature and Grain Size Variations in the Upper Mantle,” Earth Planet. Sci. Lett. 234, 119–134 (2005).

    Article  Google Scholar 

  19. A. A. Finnerty, “Xenolith-Derived Mantle Geotherms: Whither the Inflection?,” Contrib. Mineral. Petrol. 102, 367–365 (1989).

    Article  Google Scholar 

  20. A. M. Forte and H. K. C. Perry, “Geodynamic Evidence for a Chemically Depleted Continental Tectosphere,” Science 290, 1940–1943 (2000).

    Article  Google Scholar 

  21. D. Francis, “Cratonic Mantle Roots, Remnants of a More Chondritic Archean Mantle?,” Lithos. 71, 135–152 (2004).

    Article  Google Scholar 

  22. M. Freybourger, J. B. Gaherty, T. H. Jordan, et al., “Structure of the Kaapvaal Craton from Surface Waves,” Geophys. Rev. Lett. 28, 2489–2492 (2001).

    Article  Google Scholar 

  23. K. P. Furlong, W. Spakman, and R. Wortel, “Thermal Structure of the Continental Lithosphere: Constraints from Seismic Tomography,” Tectonophysics 244, 107–117 (1995).

    Article  Google Scholar 

  24. J. B. Gaherty and T. H. Jordan, “Lehmann Discontinuity as the Base of an Anisotropic Layer beneath Continents,” Science 268, 1468–1471 (1995).

    Article  Google Scholar 

  25. E. M. Galimov, “Redox Evolution of the Earth Caused by a Multi-Stage Formation of Its Core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  26. S. S. Gao, P. G. Silver, K. H. Liu, et al., “Mantle Discontinuities beneath Southern Africa,” Geophys. Rev. Lett. 29 (2002).

  27. O. F. Gaul, W. L. Griffin, S. Y. O’lReilly, and N. J. Pearson, “Mapping Olivine Composition in the Lithospheric Mantle,” Earth Planet. Sci. Lett. 182, 223–235 (2000).

    Article  Google Scholar 

  28. Yu. S. Genshaft, “Structure Patterns of Deep Xenoliths as Evidence for Dynamic Processes in the Earth’ls Lithosphere,” Fiz. Zemli, No. 10, 44–59 (1993).

    Google Scholar 

  29. V. A. Glebovitsky, L. P. Nikitina, V. Ya. Khiltova, and N. O. Ovchinnikov, “The Thermal Regimes of the Upper Mantle beneath Precambrian and Phanerozoic Structures up to the Thermobarometry Data of Mantle Xenoliths,” Lithos. 74, 1–20 (2004).

    Article  Google Scholar 

  30. F. Goarant, F. Guyot, J. Peyronneau, and J.-P. Poirier, “High-Pressure and High-Temperature Reactions between Silicates and Liquid Iron Alloys, in the Diamond Anvil Cell, Studied by Analytical Electron Microscopy”, J. Geophys. Res. 97, 4477–4487 (1992).

    Article  Google Scholar 

  31. S. Goes, R. Govers, and P. Vacher, “Shallow Mantle Temperatures under Europe from P and S Wave Tomography,” J. Geophys. Res. 105B, 11 153–11 169 (2000).

    Google Scholar 

  32. S. Goes and S. van der Lee, “Thermal Structure of the North American Uppermost Mantle Inferred from Seismic Tomography,” J. Geophys. Res. 107B (2002).

  33. S. Goes, F. J. Simmons, and K. Yoshizawa, “Seismic Constraints on Temperature of the Australian Upper-most Mantle,” Earth Planet. Sci. Lett. 236, 227–237 (2005).

    Article  Google Scholar 

  34. M. Grégoire, D. R. Bell, and A. P. Le Roex, “Garnet Lherzolites from the Kaapvaal Craton (South Africa): Trace Element Evidence for a Metasomatic History,” J. Petrol. 44, 629–657 (2003).

    Article  Google Scholar 

  35. Y. J. Gu, A. M. Dziewonski, and G. Ekstrom, “Preferential Detection of the Lehmann Discontinuity beneath Continents,” Geophys. Rev. Lett. 28, 4655–4658 (2001).

    Article  Google Scholar 

  36. C. J. Hawkesworth, D. G. Pearson, and S. P. Turner, “Chemical and Temporal Variations in the Earth’ls Lithosphere,” Phil. Trans. R. Soc. London A 357, 647–669 (1999).

    Article  Google Scholar 

  37. C. Herzberg, “Geodynamic Information in Peridotite Petrology,” J. Petrol. 45, 2507–2530 (2004).

    Article  Google Scholar 

  38. D. E. James, M. J. Fouch, J. C. VanDecar, and S. Van der Lee, “Tectospheric Structure beneath Southern Africa,” Geophys. Rev. Lett. 28, 2485–2488 (2001).

    Article  Google Scholar 

  39. D. E. James, F. R. Boyd, D. Schutt, et al., “Xenolith Constraints on Seismic Velocities in the Upper Mantle beneath Southern Africa,” Geochem. Geophys. Geosyst. 5 (2004).

  40. C. Jaupart and J.-C. Mareschal, “The Thermal Structure and Thickness of Continental Roots,” Lithos 48, 93–114 (1999).

    Article  Google Scholar 

  41. M. Q. W. Jones, “Heat Flow in the Witwatersrand Basin and Environs and Its Significance for the South African Shield Geotherm and Lithosphere Thickness,” J. Geophys. Res. 93, 3243–3260 (1988).

    Google Scholar 

  42. T. H. Jordan, “Composition and Development of the Continental Tectosphere,” Nature 274, 544–548 (1978).

    Article  Google Scholar 

  43. M. K. Kaban, “Structure of the Continental Upper Mantle from Seismic and Gravity Data,” Elektron. Nauchno-Inform. Zh. Vestn. OGGGGN RAN, No. 1(20) (2002).

  44. S. Karato, “Importance of Anelasticity in the Interpretation of Seismic Tomography,” Geophys. Res. Lett. 20, 1623–1626 (1993).

    Google Scholar 

  45. B. L. N. Kennet and E. R. Engdahl, “Traveltimes for Global Earthquake Location and Phase Identification,” Geophys. J. Int. 105, 429–465 (1991).

    Google Scholar 

  46. B. L. N. Kennet, E. R. Engdahl, and R. Buland, “Constraints on Seismic Velocities in the Earth from Traveltimes,” Geophys. J. Int. 122, 108–124 (1995).

    Google Scholar 

  47. S. D. King, “Archean Cratons and Mantle Dynamics,” Earth Planet. Sci. Lett. 234, 1–14 (2005).

    Article  Google Scholar 

  48. L. Knopoff, “Surface Waves and Their Inversion,” in The Upper Mantle, Ed. by A. Ritsema (Elsevier, Amsterdam, 1972; Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  49. M. G. Kopylova and J. K. Russell, “Chemical Stratification of Cratonic Lithosphere: Constraints from the Northern Slave Craton, Canada,” Earth Planet. Sci. Lett. 181, 71–87 (2000).

    Article  Google Scholar 

  50. M. G. Kopylova and G. Caro, “Mantle Xenoliths from the Southeastern Slave Craton: Evidence for Chemical Zonation in a Thick, Cold Lithosphere,” J. Petrol. 45, 1045–1067 (2004).

    Article  Google Scholar 

  51. M. G. Kopylova, J. Lo, and N. I. Christensen, “Petrological Constraints on Seismic Properties of the Slave Upper Mantle (Northern Canada),” Lithos. 77, 493–510 (2004).

    Article  Google Scholar 

  52. V. A. Kronrod and O. L. Kuskov, “Determination of Temperature and Bulk Composition of the Upper Mantle from Seismic Data,” Geokhimiya, No. 1, 80–85 (1996) [Geochem. Int. 34, 72–76 (1996)].

  53. V. A. Kronrod and O. L. Kuskov, “Determining Heat Flows and Radiogenic Heat Generation in the Crust and Lithosphere Based on Seismic Data and Surface Heat Flows,” Geokhimiya, No. 10 (2006) [Geochem. Int. 44, 1035–1040 (2006)].

  54. K. Kuge and Y. Fukao, “High-Velocity Lid of East Antarctica: Evidence of a Depleted Continental Lithosphere,” J. Geophys. Res. 110B (2005).

  55. J. Kung, B. Li, T. Uchida, et al., “In Situ Measurements of Sound Velocities and Densities across the Orthopyroxene → High-Pressure Clinopyroxene Transition in MgSiO3 at High Pressure,” Phys. Earth Planet. Inter. 147, 27–44 (2004).

    Article  Google Scholar 

  56. O. L. Kuskov, “Constitution of the Moon: 4. Composition of the Mantle from Seismic Data,” Phys. Earth Planet. Inter. 102, 239–257 (1997).

    Article  Google Scholar 

  57. O. L. Kuskov and R. F. Galimzyanov, “Thermodynamics of Stable Mineral Assemblages of the Mantle Transition Zone,” in Chemistry and Physics of Terrestrial Planets, Ed. by S. K. Saxena (Springer, New York, 1986), Vol. 6, pp. 310–361.

    Google Scholar 

  58. O. L. Kuskov, O. B. Fabrichnaya, and L. M. Truskinovsky, “Constitution of the Mantle. 2. Petrological Models of Transition Zone Based on FMS Phase Diagram,” Phys. Earth Planet. Inter. 69, 72–84 (1991).

    Article  Google Scholar 

  59. O. L. Kuskov and A. B. Panferov, “Phase Diagrams of the FeO-MgO-SiO2 System and the Structure of the Mantle Discontinuities,” Phys. Chem. Miner. 17, 642–653 (1991).

    Article  Google Scholar 

  60. O. L. Kuskov and A. B. Panferov, “Thermodynamic Models of the Structure of the 650-km Seismic Boundary,” Fiz. Zemli, No. 7, 67–80 (1992).

    Google Scholar 

  61. O. L. Kuskov and N. V. Mikhaleva, “Models of the Composition and Structure of the Canadian Shield Upper Mantle,” Fiz. Zemli, No. 10, 99–102 (1993).

  62. O. L. Kuskov and V. A. Kronrod, “Basic Thermodynamic Models of the Upper Mantle: The Variation Limits of the Chemical Composition and Temperature,” Geokhimiya, No. 10, 1383–1397 (1994).

  63. O. L. Kuskov and V. A. Kronrod, “Constitution of the Moon: 5. Constraints on Composition, Density, Temperature, and Radius of a Core,” Phys. Earth Planet. Inter. 107, 285–306 (1998).

    Article  Google Scholar 

  64. O. L. Kuskov and V. A. Kronrod, “Core Sizes and Internal Structure of the Earth’ls and Jupiter’ls Satellites,” Icarus 151, 204–227 (2001).

    Article  Google Scholar 

  65. O. L. Kuskov, V. A. Kronrod, and L. L. Hood, “Geochemical Constraints on the Seismic Properties of the Lunar Mantle,” Phys. Earth Planet. Inter. 134, 175–189 (2002).

    Article  Google Scholar 

  66. O. L. Kuskov and V. A. Kronrod, “Determination of the Temperature in the Continental Upper Mantle from Geochemical and Seismic Data,” Geokhimiya, No. 3, 267–283 (2006).

  67. O. L. Kuskov, V. A. Kronrod, and H. Annersten, “Inferring Upper-Mantle Temperatures from Seismic and Geochemical Constraints: Implications for Kaapvaal Craton,” Earth Planet. Sci. Lett. 244, 133–154 (2006).

    Article  Google Scholar 

  68. R. St. J. Lambert, “Archean Thermal Regimes, Temperatures of the Crust and Upper Mantle, and Evolutionary Model of the Earth,” in Early History of the Earth, Ed. by B. Windley (Mir, Moscow, 1980) [in Russian].

    Google Scholar 

  69. C.-T. A. Lee, “Compositional Variation of Density and Seismic Velocities in Natural Peridotites at STP Conditions: Implications for Seismic Imaging of Compositional Heterogeneities in the Upper Mantle,” J. Geophys. Res. 108(B9), 2441 (2003).

    Article  Google Scholar 

  70. C.-T. A. Lee and R. L. Rudnick, “Compositionally Stratified Cratonic Lithosphere: Petrology and Geochemistry of Peridotite Xenoliths from the Labait Volcano, Tanzania,” in Proc. VII Int. Kimberlite Conf., pp. 503–521 (1999).

  71. C.-T. A. Lee, A. Lenardic, C. M. Cooper, et al., “The Role of Chemical Boundary Layers in Regulating the Thickness of Continental and Oceanic Thermal Boundary Layers,” Earth Planet. Sci. Lett. 230, 379–395 (2005).

    Article  Google Scholar 

  72. I. Lehmann, “S and the Structure of the Upper Mantle,” Geophys. J. R. Astron. Soc. 4, 124–138 (1961).

    Google Scholar 

  73. L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Modern Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  74. C. Long and N. I. Christensen, “Seismic Anisotropy of South African Upper Mantle Xenoliths,” Earth Planet. Sci. Lett. 179, 551–565 (2000).

    Article  Google Scholar 

  75. W. F. McDonough, “Constraints on the Composition of the Continental Lithospheric Mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).

    Article  Google Scholar 

  76. V. P. Myasnikov and E. G. Markaryan, “A Hydrodynamic Model of the Earth’ls Evolution,” Dokl. Akad. Nauk SSSR 237, 1055–1058 (1977).

    Google Scholar 

  77. V. P. Myasnikov and V. D. Savushkin, “Structure of the Core-Mantle Transition Zone in a Hydrodynamic Model of the Earth’ls Evolution,” Dokl. Akad. Nauk SSSR 240, 813–816 (1978).

    Google Scholar 

  78. V. P. Myasnikov and V. E. Fadeev, Models of the Evolution of the Earth and Terrestrial Planets (Progress in Science and Technology, Ser. Physics of the Earth, Vol. 5) (VINITI, Moscow, 1980) [in Russian].

    Google Scholar 

  79. G. Nolet, S. P. Grand, and B. L. N. Kennett, “Seismic Heterogeneity in the Upper Mantle,” J. Geophys. Res. 99, 23 753–23 766 (1994).

    Google Scholar 

  80. S. Y. O’lReilly and W. L. Griffin, “Imaging Global Chemical and Thermal Heterogeneity in the Subcontinental Lithospheric Mantle with Garnets and Xenoliths: Geophysical Implications,” Tectonophysics 416, 289–309 (2006).

    Article  Google Scholar 

  81. D. G. Pearson, “The Age of Continental Roots,” Lithos. 48, 171–194 (1999).

    Article  Google Scholar 

  82. H. N. Pollack, S. J. Hurter, and J. R. Johnson, “Heat Flow from the Earth’ls Interior: Analysis of the Global Data Set,” Rev. Geophys. 31, 267–280 (1993).

    Article  Google Scholar 

  83. Y. H. Poudjom Djomani, S. Y. O’lReilly, W. L. Griffin, and P. Morgan, “The Density Structure of Subcontinental Lithosphere through Time,” Earth Planet. Sci. Lett. 184, 605–621 (2001).

    Article  Google Scholar 

  84. K. Priestley, D. McKenzie, and E. Debayle, “The State of the Upper Mantle beneath Southern Africa,” Tectonophysics 416, 101–112 (2006).

    Article  Google Scholar 

  85. X. Qiu, K. Priestley, and D. McKenzie, “Average Lithospheric Structure of Southern Africa,” Geophys. J. Int. 127, 563–587 (1996).

    Google Scholar 

  86. A. E. Ringwood, Composition and Petrology of the Earth’ls Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  87. J. Ritsema and H. van Heijst, “New Seismic Model of the Upper Mantle beneath Africa,” Geology 28, 63–66 (2000).

    Article  Google Scholar 

  88. T. V. Romanyuk, “Seismic and Density Modeling of the Crust and Upper Mantle along the Kvarts Geotraverse,” Fiz. Zemli, No. 9, 11–23 (1995).

    Google Scholar 

  89. R. L. Rudnick, W. F. McDonough, and R. J. O’lConnell, “Thermal Structure, Thickness and Composition of Continental Lithosphere,” Chem. Geol. 145, 395–411 (1998).

    Article  Google Scholar 

  90. I. D. Ryabchikov, “Fluid Regime of Mantle Plumes,” Geokhimiya, No. 9, 923–927 (2003).

  91. R. L. Saltzer, “Upper Mantle Structure of the Kaapvaal Craton from Surface Wave Analysis—a Second Look,” Geophys. Rev. Lett. 29 (2002).

  92. S. K. Saxena and G. Eriksson, “Theoretical Computation of Mineral Assemblages in Pyrolite and Lherzolite,” J. Petrol. 24, 538–555 (1984).

    Google Scholar 

  93. N. M. Shapiro and M. H. Ritzwoller, “Thermodynamic Constraints on Seismic Inversions,” Geophys. J. Int. 157, 1175–1188 (2004).

    Article  Google Scholar 

  94. R. E. Simon, C. Wright, E. M. Kgaswane, and M. T. O. Kwadiba, “The P Wavespeed Structure below and around the Kaapvaal Craton to Depths of 800 km, from Traveltimes and Waveforms of Local and Regional Earthquakes and Mining-Induced Tremors,” Geophys. J. Int. 151, 132–145 (2002).

    Article  Google Scholar 

  95. R. E. Simon, C. Wright, M. T. O. Kwadiba, and E. M. Kgaswane, “Mantle Structure and Composition to 800-km Depth beneath Southern Africa and Surrounding Oceans from Broadband Body Waves,” Lithos. 71, 353–367 (2003).

    Article  Google Scholar 

  96. N. Sleep, “Geodynamic Implications of Xenolith Geotherms,” Geochem. Geophys. Geosyst. 4 (2003).

  97. W. R. Smith and R. M. Missen, Chemical Reaction Equilibrium Analysis (Wiley-Intersci., New York, 1982).

    Google Scholar 

  98. S. V. Sobolev, H. Zeyen, G. Stoll, et al., “Upper Mantle Temperatures from Teleseismic Tomography of French Massif Central Including Effects of Composition, Mineral Reactions, Anharmonicity, Anelasticity and Partial Melt,” Earth Planet. Sci. Lett. 139, 147–163 (1996).

    Article  Google Scholar 

  99. S. V. Sobolev, H. Zeyen, H. Granet, et al., “Upper Mantle Temperatures and Lithosphere-Asthenosphere System beneath the French Massif Central Constrained by Seismic, Gravity, Petrologic and Thermal Observations,” Tectonophysics 275, 143–164 (1997).

    Article  Google Scholar 

  100. L. V. Solov’leva, B. M. Vladimirov, L. V. Dneprovskaya, et al., Kimberlites and Kimberlite-Like Rocks: Upper Mantle Substance beneath Ancient Platforms (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  101. L. Stixrude and C. Lithgow-Bertelloni, “Mineralogy and Elasticity of the Oceanic Upper Mantle: Origin of the Low-Velocity Zone,” J. Geophys. Res. 110 (2005).

  102. S. R. Taylor, Solar System Evolution: A New Perspective (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  103. H. Thybo and E. Perchuć, “The Seismic 8° Discontinuity and Partial Melting in Continental Mantle,” Science 275, 1626–1629 (1997).

    Article  Google Scholar 

  104. V. P. Trubitsyn, “Phase Transitions, Compressibility, Thermal Expansion, and Adiabatic Temperature in the Mantle,” Fiz. Zemli, No. 2, 3–16 (2000) [Izvestiya, Phys. Solid Earth 36, 101–113 (2000).

  105. A. V. Ukhanov, I. D. Ryabchikov, and A. D. Khar’lkiv, Lithospheric Mantle of the Yakutian Kimberlite Province (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  106. L. L. Vanyan, Electromagnetic Sounding (Nauchnyi Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  107. L. Vinnik and V. Farra, “Subcratonic Low-Velocity Layer and Flood Basalts,” Geophys. Rev. Lett. 29 (2002).

  108. L. P. Vinnik and V. Farra, “A Superdeep Low Velocity Layer in the Upper Mantle of Ancient Platforms,” Elektron. Nauchno-Inform. Zh. Vestn. OGGGGN RAN, No. 1 (20), 1–8 (2002).

  109. L. P. Vinnik, E. Kurnik, and V. Farra, “Lehmann Discontinuity beneath North America: No Role for Seismic Anisotropy,” Geophys. Rev. Lett. 32 (2005).

  110. A. P. Vinogradov, “Chemistry of the Solar System Planets,” in The 11th Mendeleev Conference on General and Applied Chemistry (Nauka, Moscow, 1975), pp. 139–169 [in Russian].

    Google Scholar 

  111. A. B. Woodland, “The Orthorhombic to High-P Monoclinic Phase Transition in Mg-Fe Pyroxenes: Can It Produce a Seismic Discontinuity?,” Geophys. Rev. Lett. 25, 1241–1244 (1998).

    Article  Google Scholar 

  112. F. Xu, J. E. Vidale, P. S. Earle, and H. M. Benz, “Mantle Discontinuities Under Southern Africa from Precursors to P′Pdf,” Geophys. Rev. Lett. 25, 571–574 (1998).

    Article  Google Scholar 

  113. T. B. Yanovskaya, “Problems of Seismic Tomography,” in Problems of Geotomography, Ed. by A. V. Nikolaev et al. (Nauka, Moscow, 1997), pp. 86–98 [in Russian].

    Google Scholar 

  114. M. Zhao, C. A. Langston, A. A. Nyblade, and T. J. Owens, “Upper Mantle Velocity Structure beneath Southern Africa from Modeling Regional Seismic Data,” J. Geophys. Res. 104B, 4783–4794 (1999).

    Article  Google Scholar 

  115. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.L. Kuskov, V.A. Kronrod, 2007, published in Fizika Zemli, 2007, No. 1, pp. 45–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuskov, O.L., Kronrod, V.A. Composition, temperature, and thickness of the lithosphere of the Archean Kaapvaal craton. Izv., Phys. Solid Earth 43, 42–62 (2007). https://doi.org/10.1134/S1069351307010053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351307010053

PACS numbers

Navigation