Skip to main content
Log in

Protective activity of fragments of the prion protein after immunization of animals with experimentally induced Alzheimer’s disease

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The prion protein is considered as one of the membrane targets of the neurotoxic beta-amyloid during development of Alzheimer’s disease. We chose and synthesized peptide fragments that corresponded to the 17–33, 23–33, 95–110, and 101–115 sequences of the prion protein and are responsible for the betaamyloid binding. The effect of immunization with the peptides on the development of symptoms of Alzheimer’s disease was investigated on animals with an experimentally induced form of the disease. Immunization with either free 17–33 peptide or with protein conjugates of the 23–33 and 101–115 peptides was shown to restore spatial memory of the animals. Immunization with the 17–33 peptide was also shown to decrease the level of brain beta-amyloid and to recover morphofunctional parameters of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BE:

subjected to a bulbectomy

SO:

sham operated

CFA:

complete Freund’s adjuvant

Fmoc:

9-fluorenylmethoxycarbonyl

IFA:

incomplete Freund’s adjuvant

KLH:

keyhole limpet hemocyanin

OVA:

ovalbumin

PBS:

phosphate buffered saline

References

  1. Prusiner, S.B., Proc. Natl. Acad. Sci. U.S.A., 1998. vol. 95, pp. 13363–13383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Esiri, M.M., Carter, J., and Ironside, J.W., Neuropathol. Appl. Neurobiol., 2000, vol. 26, pp. 273–284.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrer, I., Blanco, R., Carmona, M., Puig, B., Ribera, R., Rey, M.J., and Ribalta, T., Acta Neuropathol., 2001, vol. 101, pp. 49–56.

    CAS  PubMed  Google Scholar 

  4. Kovacs, G.G., Zerbi, P., Voigtlander, T., Strohschneider, M., Trabattoni, G., Hainfellner, J.A., and Budka, H., Neurosci. Lett., 2002, vol. 329, pp. 269–272.

    Article  CAS  PubMed  Google Scholar 

  5. Parkin, E.T., Watt, N.T., Hussain, I., Eckman, E.A., Eckman, C.B., Manson, J.C., Baybutt, H.N., Turner, A.J., and Hooper, N.M., Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 11062–11067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Dermaut, B., Croes, E.A., Rademakers, R., Broeck, M., Cruts, M., Hofman, A., van Duijn, C.M., and Van Broeckhoven, C., Ann. Neurol., 2003, vol. 53, pp. 409–412.

    Article  CAS  PubMed  Google Scholar 

  7. Riemenschneider, M., Klopp, N., Xiang, W., Wagenpfeil, S., Vollmert, C., Müller, U., Förstl, H., Illig, T., Kretzschmar, H., and Kurz, A., Neurology, 2004, vol. 63, pp. 364–366.

    Article  CAS  PubMed  Google Scholar 

  8. Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M., Nature, 2009, vol. 457, pp. 1128–1132.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chung, E., Ji, Y., Sun, Y., Kascsak, R.J., Kascsak, R.B., Mehta, P.D., Strittmatter, S.M., and Wisniewski, T., BMC Neurosci., 2010, vol. 11, p. 130.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Spinner, D.S., Kascsak, R.B., Lafauci, G., Meeker, H.C., Ye, X., Flory, M.J., Kim, J.I., Schuller-Levis, G.B., Levis, W.R., Wisniewski, T., Carp, R.I., and Kascsak, R.J., J. Leukocyte Biol., 2007, vol. 81, pp. 1374–1385.

    Article  CAS  PubMed  Google Scholar 

  11. Bobkova, N.V., Medvinskaya, N.I., Kamynina, A.V., Aleksandrova, I.Y., Nesterova, I.V., Samokhin, A.N., Koroev, D.O., Filatova, M.P., Nekrasov, P.V., Abramov, A.Y., Leonov, S.V., and Volpina, O.M., Neurobiol. Learn. Mem., 2014, vol. 107, pp. 50–64.

    Article  CAS  PubMed  Google Scholar 

  12. Kamynina, A.V., Holmström, K.M., Koroev, D.O., Volpina, O.M., and Abramov, A.Y., Int. J. Biochem. Cell. Biol., 2013, vol. 45, pp. 899–907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Peretz, D., Williamson, R.A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., Mehlhorn, I.R., Legname, G., Wormald, M.R., Rudd, P.M., Dwek, R.A., Burton, D.R., and Prusiner, S.B., Nature, 2001, vol. 412, pp. 739–743.

    Article  CAS  PubMed  Google Scholar 

  14. White, A.R., Enever, P., Tayebi, M., Mushens, R., Linehan, J., Brandner, S., Anstee, D., Collinge, J., and Hawke, S., Nature, 2003, vol. 422, pp. 80–83.

    Article  CAS  PubMed  Google Scholar 

  15. Oboznaya, M.B., Gilch, S., Titova, M.A., Koroev, D.O., Volkova, T.D., Volpina, O.M., and Schätzl, H.M., Cell. Mol. Neurobiol., 2007, vol. 27, pp. 271–284.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, S., Yadav, S.P., and Surewicz, W.K., J. Biol. Chemistry, 2010, vol. 285, pp. 26377–26383.

    Article  CAS  Google Scholar 

  17. Kang, M., Kim, S.Y., An, S.S., and Ju, Y.R., Exp. Mol. Med., 2013, vol. 45, p. e34.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L., and Prusiner, S.B., Biochemistry, 1993, vol. 32, pp. 1991–2002.

    Article  CAS  PubMed  Google Scholar 

  19. Vol’pina, O.M., Titova, M.A., Zhmak, M.N., Koroev, D.O., Oboznaya, M.B., Volkova, T.D., and Ivanov, V.T., Russ. J. Bioorg. Chem., 2002, vol. 28, pp. 349–356.

    Article  Google Scholar 

  20. Hozumi, S., Nakagawasai, O., Tan-No, K., Niijima, F., Yamadera, F., Murata, A., Arai, Y., Yasuhara, H., and Tadano, T., Behav. Brain Res., 2003, vol. 138, pp. 9–15.

    Article  CAS  PubMed  Google Scholar 

  21. Bobkova, N.V., Nesterova, I.V., Dana, R., Dana, E., Nesterov, V.I., Aleksandrova, Y., Medvinskaya, N.I., and Samokhin, A.N., Neurosci. Behav. Physiol., 2004, vol. 34, no. 7, pp. 671–676.

    Article  CAS  PubMed  Google Scholar 

  22. Aleksandrova, I.Yu., Kuvichkin, V.V., Kashparov, I.A., Medvinskaya, N.I., Nesterova, I.V., Lunin, S.M., Samokhin, A.N., and Bobkova, N.V., Biochemistry (Moscow), 2004, vol. 69, pp. 176–180.

    Article  CAS  Google Scholar 

  23. Immunochemical Protocols, 2nd ed., Methods in Molecular Biology, Vol. 80, Pound, J., Ed., Humana Press, 1998.

  24. Volpina, O.M., Medvinskaya, N.I., Kamynina, A.V., Zaporozhskaya, Y.V., Aleksandrova, I.J., Koroev, D.O., Samokhin, A.N., Volkova, T.D., Arseniev, A.S., and Bobkova, N.V, Russ. J. Bioorg. Chem., 2014, vol. 40, pp. 417–422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Volkova.

Additional information

Original Russian Text © O.M. Volpina, T.D. Volkova, N.I. Medvinskaya, A.V. Kamynina, Ya.V. Zaporozhskaya, I.Yu. Aleksandrova, D.O. Koroev, A.N. Samokhin, I.V. Nesterova, V.I. Deygin, N.V. Bobkova, 2015, published in Bioorganicheskaya Khimiya, 2015, Vol. 41, No. 2, pp. 145–153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpina, O.M., Volkova, T.D., Medvinskaya, N.I. et al. Protective activity of fragments of the prion protein after immunization of animals with experimentally induced Alzheimer’s disease. Russ J Bioorg Chem 41, 125–132 (2015). https://doi.org/10.1134/S1068162015020168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162015020168

Keywords

Navigation