Skip to main content
Log in

Classification of passive location invariants and their use

  • Navigation Systems
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

In the context of all kinds of passive location systems, we consider different types of invariants taking into account the temporal, spatial, and spatiotemporal symmetries, which can be used to solve specific problems of target tracking. We classify these invariants, give ways of their finding based on models of the motion of observed targets, and describe the structures and geometries of the given passive location system. We consider important applied problems that can be solved with the help of invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Bulychev and A. P. Manin, Mathematical Aspects of Determining the Motion of Flying Objects (Mashinostroenie, Moscow, 2000) [in Russian].

    Google Scholar 

  2. Yu. G. Bulychev and A. A. Korotun, “Application of a combination of invariants to solving a problem of bearing identification in direction-finding systems,” Radiotekh. Elektron. 1, 96–105 (1989).

    Google Scholar 

  3. Yu. G. Bulychev and A. A. Korotun, “Group-theoretic approach to the processing of radar data in measuring systems,” Radiotekh. Elektron. 34 (9), 1878–1885 (1989).

    Google Scholar 

  4. Yu. G. Bulychev, V. Yu. Bulychev, A. A. Mozol’, A. S. Pomysov, and I. G. Semenov, “An invariant plane method for estimating systematic elevation-angle errors of measurements,” J. Commun. Technol. Electron. 56, 957–964 (2011).

    Article  Google Scholar 

  5. Yu. G. Bulychev, I. A. Babushkin, L. I. Borodin, V. A. Golovskoy, and A. A. Mozol’, “Decentered method of finding selection for a set of targets in the multipositional angular-measuring system,” Radiotekhnika, No. 5, 79–85 (2010).

    Google Scholar 

  6. Yu. G. Bulychev and I. V. Burlai, “A system approach to modeling stochastic objects with invariants,” Autom. Remote Control 62, 1939 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. G. Bulychev, “Application of kinematic informative signs in the problem of the indication of false crossings of direction findings in two-point goniometer systems,” Radiotekhnika, No. 4, 38–43 (1988).

    Google Scholar 

  8. V. I. Elkin, “Conditions of aggregation of controlled dynamical systems,” Zh. Vychisl. Mat. Mat. Fiz. 18 (4), 928–954 (1978).

    MathSciNet  MATH  Google Scholar 

  9. V. I. Elkin, “Observed realization of nonlinear controlled dynamical systems,” Kibernet. Vychisl. Tekh., No. 54, 39–45 (1982).

    MathSciNet  MATH  Google Scholar 

  10. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, Reading, MA, 1977; Mir, Moscow, 1981).

    MATH  Google Scholar 

  11. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).

    MATH  Google Scholar 

  12. Yu. N. Pavlovskii, “Aggregation, decomposition, group properties, decomposition structures of dynamical systems,” Kibernet. Vychisl. Tekh., No. 39, 53–62 (1978).

    MathSciNet  Google Scholar 

  13. Yu. N. Pavlovskii and G. N. Yakovenko, “Groups admitted by dynamical systems,” in Optimization Method and their Applications, Collection of Articles (Nauka, Sib. Otdel., Novosibirsk, 1982), pp. 155–189 [in Russian].

    Google Scholar 

  14. G. N. Yakovenko, “A group approach to the controllability and invariance of dynamical systems,” Kibernet. Vychisl. Tekh., No. 39, 26–39 (1978).

    MathSciNet  Google Scholar 

  15. Yu. G. Bulychev and A. N. Shukhardin, “Identification of target trajectory parameters on the basis of a mobile single-channel direction finder,” Radiotekhnika, No. 8, 811 (2004).

    Google Scholar 

  16. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, and A. A. Mozol’, “Estimation of parameters of object motion based on stationary quasi-autonomous direction finder,” J. Comput. Syst. Sci. Int. 52, 811 (2013).

    Article  MATH  Google Scholar 

  17. Yu. G. Bulychev, I. V. Burlai, A. P. Manin, and Ya. V. Kritskii, “The variational–selective method for estimating object coordinates in a theta-theta navigation system,” J. Comput. Syst. Sci. Int. 40, 663 (2001).

    MATH  Google Scholar 

  18. V. S. Chernyak, Multiposition Radiolocation (Radio Svyaz’, Moscow, 1993) [in Russian].

    Google Scholar 

  19. Yu. P. Mel’nikov and S. V. Popov, Radio Engineering Exploration (Radiotekhnika, Moscow, 2008) [in Russian].

    Google Scholar 

  20. Yu. G. Bulychev, “Nonlinear theory of support-projection calculations in optimal control problems,” Avtom. Telemekh., No. 4, 14–27 (1999).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bulychev.

Additional information

Original Russian Text © V.Yu. Bulychev, Yu.G. Bulychev, S.S. Ivakina, I.G. Nasenkov, 2015, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2015, No. 6, pp. 71–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulychev, V.Y., Bulychev, Y.G., Ivakina, S.S. et al. Classification of passive location invariants and their use. J. Comput. Syst. Sci. Int. 54, 905–915 (2015). https://doi.org/10.1134/S1064230715060040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230715060040

Keywords

Navigation