Skip to main content
Log in

A comparative analysis of microbiomes in natural and anthropogenically disturbed soils of northwestern Kazakhstan

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The goal of this study was to determine the relationships between the structure of the soil microbiome and the agroecological state of soils by the example of natural undisturbed (steppe areas) and anthropogenically disturbed (pastures, croplands, fallows) areas in the territory of northwestern Kazakhstan. The highest abundance of proteobacteria was found in the anthropogenically disturbed of fallows and in undisturbed soils; in other cases, actinobacteria and representatives of the Firmicutes phylum predominated. Different kinds of anthropogenic impacts resulted in the decrease in the portions of bacteria from the Acidobacteria, Gemmatimonadetes, and Firmicutes phyla. In the disturbed soils, the portions of bacteria from the Erysipelothrix, Mycobacterium, Methylibium, Skermanella, Ralstonia, Lactococcus, Bdellovibrio, Candidatus nitrososphaera, Catellatospora, Cellulomonas, Stenotrophomonas, and Steroidobacter genera increased. Bacteria of the Erysipelothrix and Methylibium genera occurred only in the undisturbed soils. The anthropogenically disturbed and undisturbed soils differed significantly in the taxonomic structure of their microbiomes forming two separate clusters, which confirms the efficiency of using the data on the structure of soil microbiomes when assessing the agroecological status of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Andronov, S. N. Petrova, A. G. Pinaev, E. V. Pershina, S. Z. Rakhimgalieva, K. M. Akhmedenov, A. V. Gorobets, and N. K. Sergaliev, “Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and realtime PCR techniques,” Eurasian Soil Sci. 45 (2), 147–156 (2012).

    Article  Google Scholar 

  2. V. A. Dumova, E. V. Pershina, Ya. V. Merzlyakova, Yu. V. Kruglov, and E. E. Andronov, “General trends in dynamics of soil microbial communities during a longterm field experiment according to the results of highperformance sequencing of 16S-rRNA gene libraries,” S-kh. Biol., No. 5, 85–92 (2013).

    Google Scholar 

  3. E. V. Pershina, E. E. Andronov, A. G. Pinaev, G. A. Akhmetova, V. A. Dumova, and N. A. Provorov, “T-RFLP analysis of dynamics of soil microbial communities affected by xenobiotics,” S-kh. Biol., No. 3, 81–87 (2011).

    Google Scholar 

  4. S. N. Petrova, E. E. Andronov, A. G. Pinaev, and E. V. Pershina, “Prospects of using molecular-genetic analysis in soil ecology,” Vestn. Orlovsk. Gos. Agrar. Univ. 26 (5), 45–48 (2010).

    Google Scholar 

  5. E. V. Pershina, G. S. Tamazyan, A. S. Dol’nik, A. G. Pinaev, N. Kh. Sergaliev, and E. E. Andronov, “T-RFLP analysis of the structure of microbial community of salt-affected soils,” Ekol. Genet. 10 (2), 32–40 (2012).

    Google Scholar 

  6. E. L. Chirak, E. V. Pershina, A. S. Dol’nik, O. V. Kutovaya, E. S. Vasilenko, B. M. Kogut, Ya. V. Merzlyakova, and E. E. Andronov, “Taxonomic structure of microbial communities in different soils according to the results of high-performance sequencing of 16S-rRNA gene libraries,” S-kh. Biol., No. 3, 100–109 (2013).

    Google Scholar 

  7. S. T. Bates, D. Berg-Lyons, J. G. Caporaso, W. A. Walters, R. Knight, and N. Fierer, “Examining the global distribution of dominant archaeal populations in soil,” ISME J., No. 4, 908–917 (2011).

    Article  Google Scholar 

  8. E. Blochl, R. Rachel, S. Burggraf, D. Hafenbradl, H. W. Jannasch, and K. O. Stetter, “Pyrolobus fumarii gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C,” Extremophiles 1 (1), 14–21 (1997).

    Article  Google Scholar 

  9. Brock Biology of Microorganisms, Ed. by M. Madigan and J. Martinko (Prentice Hall, Upper Side River, NJ, 2005).

    Google Scholar 

  10. J. G. Caporaso, J. Kuczynski, J. Stombaugh, et al., “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 5 (7), 335–336 (2010).

    Article  Google Scholar 

  11. R. Daniel, “The metagenomics of soil,” Nat. Rev. Microbiol. 3, 470–478 (2005).

    Article  Google Scholar 

  12. J. M. DeBruyn, L. T. Nixon, M. N. Fawaz, A. M. Johnson, and M. Radosevich, “Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil,” Appl. Environ. Microbiol. 17 (77), 6295–6300 (2011).

    Article  Google Scholar 

  13. T. Z. DeSantis, P. Hugenholtz, N. Larsen, et al., “Green genes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Appl. Environ. Microbiol. 72 (7), 5069–5072 (2006).

    Article  Google Scholar 

  14. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).

    Article  Google Scholar 

  15. N. Fierer, J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, S. Owens, J. A. Gilbert, D. H. Wall, and J. G. Caporaso, “Cross-biome metagenomic analyses of soil microbial communities and their functional attributes,” Proc. Natl. Acad. Sci. U.S.A. 52 (109), 21390–21395 (2012).

    Article  Google Scholar 

  16. J. Handelsman, “Metagenomics: application of genomics to uncultured microorganisms,” Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  Google Scholar 

  17. A. Hartmann, P. Lemanceau, and J. I. Prosser, “Multitrophic interactions in the rhizosphere—rhizosphere microbiology: at the interface of many disciplines and expertises,” FEMS Microbiol. Ecol. 65, 179 (2008).

    Article  Google Scholar 

  18. M. Hartmann, B. Frey, J. Mayer, P. Mäder, and F. Widmer, “Distinct soil microbial diversity under long-term organic and conventional farming,” ISME J., (2014). doi doi 10.1038/ismej.2014.210

    Google Scholar 

  19. C. L. Lauber, M. S. Strickland, M. A. Bradford, and N. Fierer, “The influence of soil properties on the structure of bacterial and fungal communities across land-use types,” Soil Biol. Biochem. 40 (9), 2407–2415 (2008).

    Article  Google Scholar 

  20. R. Li, E. Khafipour, D. O. Krause, M. H. Entz, T. R. Kievit, and W. G. D. Fernando, “Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities,” PLoS One, (2012). doi 10.1371/journal.pone.0051897

    Google Scholar 

  21. C. A. Lozupone and R. Knight, “Global patterns in bacterial diversity,” Proc. Natl. Acad. Sci. U.S.A. 104 (27), 11436–11440 (2007).

    Article  Google Scholar 

  22. M. Lupatini, A. K. A. Suleiman, R. J. S. Jacques, Z. I. Antoniolli, A. de Siqueira Ferreira, E. E. Kuramae, and L. F. W. Roesch, “Network topology reveals high connection levels and few key microbial genera within soils,” Front. Environ. Sci. 2 10 (2014). doi 10.3389/fenvs.2014.0001010.3389/fenvs.2014.00010

    Article  Google Scholar 

  23. E. Martin, K. Klug, A. Frischmann, H. J. Busse, P. Kämpfer, and U. Jäckel, “Jeotgalicoccus coquinae sp. nov. and Jeotgalicoccus aerolatus sp. nov., isolated from poultry houses,” Int. J. Syst. Evol. Microbiol. 61, 237–241 (2011).

    Article  Google Scholar 

  24. H. Nacke, A. Thurmer, A. Wollherr, C. Will, R. Daniel, et al., “Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils,” PLoS One 6, 1–12 (2011).

    Article  Google Scholar 

  25. E. Pershina, E. Andronov, A. Pinaev, and N. Provorov, “Recent advances and perspectives in metagenomic studies of soil microbial communities,” in Management of the Microbial Resources in the Environment, Ed. by A. Malik, E. Grohmann, and M. Alves (Springer-Verlag, Berlin, 2013), pp. 141–166.

    Chapter  Google Scholar 

  26. L. Ranjard, S. Dequiedt, M. Lelievre, P. A. Maron, C. Mougel, F. Morin, and P. Lemanceau, “Platform GenoSol: a new tool for conserving and exploring soil microbial diversity,” Environ. Microbiol. Rep. 1, 97–99 (2009).

    Article  Google Scholar 

  27. L. F. W. Roesch, R. R. Fulthorpe, A. Riva, G. Casella, A. K. M. Hadwin, A. D. Ken, et al., “Pyrosequencing enumerates and contrasts soil microbial diversity,” ISME J. 1, 283–290 (2007).

    Google Scholar 

  28. M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor, C. L. Tiong, M. Gilman, M. S. Osburne, J. Clardy, et al., “Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms,” Appl. Environ. Microbiol. 66, 2541–2547 (2000).

    Article  Google Scholar 

  29. R. S. Shange, O. Ankumah, A. M. Ibekwe, R. Zabawa, and S. E. Dowd, “Distinct soil bacterial communities revealed under a diversely managed agroecosystem,” PLoS One 7 (7), e40338 (2012). doi 10.1371/journal. pone.0040338

    Article  Google Scholar 

  30. M. A. Tanner, C. L. Everett, W. J. Coleman, M. M. Yang, and D. C. Youvan, “Complex microbial communities inhabiting sulfide-rich black mud from marine coastal environments,” Biotechnol. Alia 8, 1–16 (2000).

    Google Scholar 

  31. R. Upchurch, C.-Y. Chiu, K. Everetta, G. Dyszynskia, D. C. Colemanc, and W. B. Whitmana, “Differences in the composition and diversity of bacterial communities from agricultural and forest soils,” Soil Biol. Biochem. 40 (6), 1294–1305 (2008).

    Article  Google Scholar 

  32. T. M. Vogel, P. Simonet, J. K. Jansson, P. R. Hirsh, J. M. Tiedje, J. D. van Elsas, M. J. Bailey, R. Nalin, and L. Philippot, “TerraGenome: a consortium for the sequencing of a soil metagenome,” Nat. Rev. Microbiol. 7, 252 (2009).

    Article  Google Scholar 

  33. J. H. Yoon, K. C. Lee, N. Weiss, K. H. Kang, and Y. H. Park, “Jeotgalicoccus halotoleransgen nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal,” Int. J. Syst. Evol. Microbiol. 53, 595–602 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pershina.

Additional information

Original Russian Text © E.V. Pershina, E.A. Ivanova, A.G. Nagieva, A.T. Zhiengaliev, E.L. Chirak, E.E. Andronov, N.Kh. Sergaliev, 2016, published in Pochvovedenie, 2016, No. 6, pp. 720–732.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershina, E.V., Ivanova, E.A., Nagieva, A.G. et al. A comparative analysis of microbiomes in natural and anthropogenically disturbed soils of northwestern Kazakhstan. Eurasian Soil Sc. 49, 673–684 (2016). https://doi.org/10.1134/S1064229316060090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316060090

Keywords

Navigation