Skip to main content
Log in

Hydrogen accumulation and distribution during the saturation of a VT1-0 titanium alloy by an electrolytic method and from a gas atmosphere

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The accumulation, distribution, and thermally stimulated release of hydrogen in a VT1-0 titanium alloy during electrolytic saturation and gas-phase saturation are studied. After electrolytic saturation, a 0.4-μm-thick surface layer consisting of δ hydrides with a binding energy of 108 kJ/mol forms in the alloy. The hydride dissociation after electrolytic saturation in heating occurs in the temperature range 320–370°C. After saturation from a gas atmosphere, δ hydrides with a binding energy of 102 kJ/mol form throughout the alloy volume. The dissociation of the hydrides formed during gas-phase saturation in heating occurs in the temperature range 520–530°C. A further increase in the temperature is accompanied by the transformation of titanium from the α into the β modification. At 690–720°C, the phase transformation is completed, and another hydrogen desorption peak appears in a thermally stimulated hydrogen desorption spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wang, Mater. Sci. Eng., A 213, 134 (1996).

    Article  Google Scholar 

  2. I. Gurrappa, Mater. Characterization 51, 131 (2003).

    Article  Google Scholar 

  3. R. W. Schutz and H. B. Watkins, Mater. Sci. Eng., A 243, 305 (1998).

    Article  Google Scholar 

  4. M. Yamada, Mater. Sci. Eng., A 213, 8 (1996).

    Article  Google Scholar 

  5. W. D. Brewer, R. K. Bird, and T. A. Wallace, Mater. Sci. Eng., A 243, 299 (1998).

    Article  Google Scholar 

  6. V. Madina and I. Azkarate, Int. J. Hydrog. Energy 34, 5976 (2009).

    Article  Google Scholar 

  7. E. Lunarska, O. Chernyayeva, D. Lisovytskiy, et al., Mater. Sci. Eng., C 30, 181 (2010).

    Article  Google Scholar 

  8. Y. Furuya, A. Takasaki, K. Mizuno, et al., J. Alloys Compd. 446–447, 447 (2007).

    Article  Google Scholar 

  9. D. Eliezer, E. Tal-Gutelmacher, C. E. Cross, et al., Mater. Sci. Eng. A 421, 200 (2006).

    Article  Google Scholar 

  10. E. Tal-Gutelmacher, D. Eliezer, and E. Abramov, Mater. Sci. Eng. A 445–446, 625 (2007).

    Article  Google Scholar 

  11. F. Zeppelin, M. Haluska, and M. Hirscher, Thermochim. Acta 404, 251 (2003).

    Article  Google Scholar 

  12. A. Takasaki, Y, Furuya, K. Ojima, et al., J. Alloys Compd. 224, 269 (1995).

    Article  Google Scholar 

  13. L. V. Gulidova, V. N. Kudiyarov, N. A. Dubrova, and A. M. Lider, Al’tern. Energ. Ekol., No. 03/2 (122), 32 (2013).

    Google Scholar 

  14. A. M. Lider, N. S. Pushilina, V. N. Kudiiarov, et al., Appl. Mech. Mater. 302, 92 (2013).

    Article  ADS  Google Scholar 

  15. S. M. Lee and J. Y. L. Lee, Appl. Phys. 63, 4758 (1988).

    Article  Google Scholar 

  16. A. N. Shmakov, B. P. Tolochko, I. L. Zhogin, and M. A. Sheromov, “X-ray synchrotron radiation, neutrons and electrons for investigation of nanosystems and materials,” in Proceeding of the 7th National Conference on Nano-Bio-Info-Cognitive Technologies, RSNE-NBIK, IKRAN-RNTsKI, Moscow, 16–21 November, 2009, p. 559.

  17. A. N. Shmakov, M. G. Ivanov, B. P. Tolochko, M. R. Sharafutdinov, A. I. Ancharov, I. L. Zhogin, and M. A. Sheromov, in Proceedings of the 18th International Conference on the Applications of Synchrotron Radiation, Novosibirsk, 2010, p. 68.

  18. V. M. Aul’chenko, Proceedings of the School of Young Specialists on Synchrotron Radiation: Diffraction and Scattering, Novosibirsk, 2009, pp. 6–9.

  19. L. Yan, S. Ramamurthy, J. J. Noel, et al., Electrochim. Acta 52, 1169 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kudiyarov.

Additional information

Original Russian Text © V.N. Kudiyarov, A.M. Lider, N.S. Pushilina, N.A. Timchenko, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 9, pp. 117–121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudiyarov, V.N., Lider, A.M., Pushilina, N.S. et al. Hydrogen accumulation and distribution during the saturation of a VT1-0 titanium alloy by an electrolytic method and from a gas atmosphere. Tech. Phys. 59, 1378–1382 (2014). https://doi.org/10.1134/S1063784214090151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214090151

Keywords

Navigation