Skip to main content
Log in

Novel IR Phosphor Based on Sr3La2(Ge3O9)2 : Nd3+,Ho3+ Germanate

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Cyclogermanate Sr3La2(Ge3O9)2, isostructural to silicate Sr3Er2(Si3O9)2, activated by neodymium and holmium is obtained for the first time by the precursor method. Ion Nd3+ in the structure of Sr3La2(Ge3O9)2 is a sensitizer of the infrared luminescence of Ho3+. Excitation by radiation with a wavelength of 808 nm leads to a series of emission lines in the luminescence spectra of Sr3La2-xNd x (Ge3O9)2 : Ho3+ in the short-wave and middle-IR ranges (1.0–3.4 μm). The highest intensity of lines at 2.1 and 2.7 μm, associated with the 5I75I8 and 5I65I7 transitions in the Ho3+ ion, is found for compositions containing traces of holmium. Based on the analysis of the concentration dependences of the luminescence intensity, an optimal composition of the phosphor is determined, which ensures the maximum efficiency of conversion of laser radiation energy. The data obtained are interpreted in the assumption of cross-relaxation energy transfer from Nd3+ to Ho3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-C. Li, Y.-H. Chang, B.-S. Tsai, Y.-C. Chen, and Y.-F. Lin, J. Alloys Compd. 416, 199 (2006).

    Article  Google Scholar 

  2. Y.-C. Li, Y.-S. Chang, Y.-C. Lai, Y.-J. Lin, C.-H. Laing, and Y.-H. Chang, Mater. Sci. Eng. B 146, 225 (2008).

    Article  Google Scholar 

  3. V. G. Zubkov, I. I. Leonidov, A. P. Tyutyunnik, N. V. Tarakina, L. L. Surat, L. A. Perelyaeva, I. V. Baklanova, and O. V. Koryakova, J. Lumin. 129, 1625 (2009).

    Article  Google Scholar 

  4. H. C. G. Verhaar and W. M. P. van Kemenade, Mater. Chem. Phys. 31, 213 (1992).

    Article  Google Scholar 

  5. A. P. Tyutyunnik, I. I. Leonidov, L. L. Surat, I. F. Berger, and V. G. Zubkov, J. Solid State Chem. 197, 447 (2013).

    Article  ADS  Google Scholar 

  6. O. A. Lipina, L. L. Surat, M. A. Melkozerova, A. P. Tyutyunnik, I. I. Leonidov, and V. G. Zubkov, Opt. Spectrosc. 116, 695 (2014).

    Article  ADS  Google Scholar 

  7. V. R. Bandi, Y.-T. Nien, T.-H. Lu, and I.-G. Chen, J. Am. Ceram. Soc. 92, 2953 (2009).

    Article  Google Scholar 

  8. V. R. Bandi, B. K. Grandhe, K. Jang, H.-S. Lee, S.-S. Yi, and J.-H. Jeong, Ceram. Int. 37, 2001 (2011).

    Article  Google Scholar 

  9. K. V. Ivanovskikh, A. Meijerink, F. Piccinelli, A. Speghini, E. I. Zinin, C. Ronda, and M. Bettinelli, J. Lumin. 130, 893 (2010).

    Article  Google Scholar 

  10. F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, J. Rare Earths 27, 555 (2009).

    Article  Google Scholar 

  11. H. Yamane, T. Nagasawa, M. Shimada, and T. Endo, Acta Crystallogr. C 53, 1533 (1997).

    Article  Google Scholar 

  12. Y.-C. Chiu, W.-R. Liu, Y.-T. Yeh, S.-M. Jang, and T.-M. Chenb, J. Electrochem. Soc. 156, J221 (2009).

    Article  Google Scholar 

  13. M. Müller and T. Jüstel, J. Lumin. 155, 398 (2014).

    Article  Google Scholar 

  14. Li Naixu, Li Shuqiang, W. Yueming, Z. Bingyao, S. Yueming, and Z. Jiancheng, J. Rare Earths 32, 933 (2014).

    Article  Google Scholar 

  15. M. Zhang, Y. Liang, R. Tang, D. Yu, M. Tong, Q. Wang, Y. Zhu, X. Wu, and G. Li, RSC Adv. 4, 40626 (2014).

    Article  Google Scholar 

  16. A. Dobrowolska and E. Zych, J. Solid State Chem. 184, 1707 (2011).

    Article  ADS  Google Scholar 

  17. Z. Yang, H. Dong, X. Liang, C. Hou, L. Liu, and F. Lu, Dalton Trans. 43, 11474 (2014).

    Article  Google Scholar 

  18. M. A. Melkozerova, O. A. Lipina, Y. V. Baklanova, A. P. Tyutyunnik, and V. G. Zubkov, J. Phys. Chem. Solids 103, 76 (2017).

    Article  ADS  Google Scholar 

  19. J. Qiu, M. Shojiya, and Y. Kawamoto, J. Appl. Phys. 86, 909 (1999).

    Article  ADS  Google Scholar 

  20. Y. Zhang, L. Sun, Y. Chang, W. Li, and C. Jiang, Front. Optoelectron. 7, 74 (2014).

    Article  Google Scholar 

  21. O. A. Lipina, L. L. Surat, A. P. Tyutyunnik, and V. G. Zubkov, Opt. Spectrosc. 121, 511 (2016).

    Article  ADS  Google Scholar 

  22. Y. V. Baklanova, O. A. Lipina, L. G. Maksimova, A. P. Tyutyunnik, I. I. Leonidov, T. A. Denisova, and V. G. Zubkov, Spectrochim. Acta. A 180, 105 (2017).

    Article  ADS  Google Scholar 

  23. Y. Y. Guo, M. Li, Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, J. Appl. Phys. 110, 013512 (2011).

    Article  ADS  Google Scholar 

  24. G. X. Bai, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, Opt. Mater. 35, 1247 (2013).

    Article  ADS  Google Scholar 

  25. Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov, O. K. Alimov, N. A. Glushkov, and V. A. Konyushkin, Opt. Mater. 32, 599 (2010).

    Article  ADS  Google Scholar 

  26. I. A. Khodasevich, A. S. Grabtchikov, A. A. Kornienko, and E. B. Dunina, Opt. Spectrosc. 119, 759 (2015).

    Article  ADS  Google Scholar 

  27. I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, J. Appl. Spectrosc. 81, 1056 (2015).

    Article  ADS  Google Scholar 

  28. A. C. Larson and R. B. von Dreele, Report LAUR 86-748 (Los Alamos Natl. Laboratory, Los Alamos, NM, 2004).

    Google Scholar 

  29. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B 25, 925 (1969).

    Article  Google Scholar 

  30. J. B. Gruber, D. K. Sardar, R. M. Yow, T. H. Allik, and B. Zandi, J. Appl. Phys. 96, 3050 (2004).

    Article  ADS  Google Scholar 

  31. U. Hümmerich, O. Oyebola, E. Brown, S. B. Trivedi, A. G. Bluiett, and J. M. Zavada, Mater. Res. Soc. Symp. Proc. 1111, D07 (2009).

    Google Scholar 

  32. I. Földvairi, A. Baraldi, R. Capelletti, N. Magnani, R. Sosa, A. Munoz, L. A. Kappers, and A. Watterich, Opt. Mater. 29, 688 (2007).

    Article  ADS  Google Scholar 

  33. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, Opt. Mater. Express 2, 235 (2012).

    Article  Google Scholar 

  34. T. Wei, F. Z. Chen, X. F. Jing, F. C. Wang, Y. Tian, and S. Q. Xu, Solid State Sci. 31, 54 (2014).

    Article  ADS  Google Scholar 

  35. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Nauka, Moscow, 1975; Springer, Berlin, Heidelberg, 1990).

    Google Scholar 

  36. G. Blasse, Phys. Lett. A 28, 444 (1968).

    Article  ADS  Google Scholar 

  37. T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, JETP Lett. 71, 8 (2000).

    Article  ADS  Google Scholar 

  38. T. T. Basiev, M. E. Doroshenko, V. V. Osiko, and A. M. Prokhorov, J. Exp. Theor. Phys. 93, 1178 (2001).

    Article  ADS  Google Scholar 

  39. A. N. Georgobiani, V. B. Gutan, M. A. Kazaryan, A. V. Krotov, O. A. Manashirov, and Yu. P. Timofeev, Inorg. Mater. 45, 1166 (2009).

    Article  Google Scholar 

  40. G. A. Kumar, M. Pokhrel, A. Martinez, R. C. Dennis, I. L. Villegas, and D. K. Sardar, JALCOM 513, 559 (2012).

    Google Scholar 

  41. Y. Dwivedi and S. C. Zilio, Opt. Express 21, 4717 (2013).

    Article  ADS  Google Scholar 

  42. W. J. Zhang, X. B. Li, L. J. Wu, Y. Y. Yu, X. Z. Wang, S. Q. Liu, Z. Wang, W. C. Wang, and Y. Liu, Physica B 508, 22 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Melkozerova.

Additional information

Original Russian Text © M.A. Melkozerova, Ya.V. Baklanova, O.A. Lipina, A.Yu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 2, pp. 358–362.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkozerova, M.A., Baklanova, Y.V., Lipina, O.A. et al. Novel IR Phosphor Based on Sr3La2(Ge3O9)2 : Nd3+,Ho3+ Germanate. Phys. Solid State 60, 364–369 (2018). https://doi.org/10.1134/S1063783418020166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418020166

Navigation