Skip to main content
Log in

Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the investigation into the effect of low-temperature annealing of a powder of nanoparticles of bacterial ferrihydrite on its magnetic properties have been presented. It has been found that an increase in the time (up to 240 h) and temperature (in the range from 150 to 200°C) of annealing leads to a monotonic increase in the superparamagnetic blocking temperature, the coercive force, and the threshold field of the opening of the magnetic hysteresis loop (at liquid-helium temperatures), as well as to an increase in the magnetic resonance line width at low temperatures and in the magnetic susceptibility at room temperature. At the same time, according to the results of the analysis of the Mössbauer spectra, the annealing of ferrihydrite does not lead to the formation of new iron oxide phases. Most of these features are well consistent with the fact that the low-temperature annealing of ferrihydrite causes an increase in the size of nanoparticles, which is confirmed by the results of transmission electron microscopy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mørup, D. E. Madsen, C. Fradsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter. 19, 213202 (2007).

    ADS  Google Scholar 

  2. Yu. L. Raikher and V. I. Stepanov, J. Exp. Theor. Phys. 107 (3), 435 (2008).

    Article  ADS  Google Scholar 

  3. Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).

    Article  ADS  Google Scholar 

  4. K. Dobretsov, S. Stolyar, and A. Lopatin, Acta Otorhinolaryngol. Ital. 35 (2), 97 (2015).

    Google Scholar 

  5. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B: Condens. Matter 55 (22), R14717 (1997).

    Article  ADS  Google Scholar 

  6. M. S. Seehra, V. S. Babu, A. Manivannan, and J. W. Lynn, Phys. Rev. B: Condens. Matter 61 (5), 3513 (2000).

    Article  ADS  Google Scholar 

  7. M. S. Seehra and A. Punnoose, Phys. Rev. B: Condens. Matter 64 (13), 132410 (2001).

    Article  ADS  Google Scholar 

  8. A. Punnoose, T. Phanthavady, M. S. Seehra, N. Shah, and G. P. Huffman, Phys. Rev. B: Condens. Matter 69 (8), 054425 (2004).

    Article  ADS  Google Scholar 

  9. E. L. Duarte, R. Itri, E. Lima, M. S Baptista, T. S. Berquó, and G. F. Goya, Nanotechnology 17, 5549 (2006).

    Article  ADS  Google Scholar 

  10. T. S. Berquó, J. J. Erbs, A. Lindquist, R. L. Penn, and S. K. Banerjee, J. Phys.: Condens. Matter 21, 176005 (2009).

    ADS  Google Scholar 

  11. N. J. O. Silva, V. S. Amaral, A. Urtizberea, R. Bustamante, A. Millán, F. Palacio, E. Kampert, U. Zeitler, S. de Brion, Ó. Iglesias, and A. Labarta, Phys. Rev. B: Condens. Matter 84 (10), 104427 (2011).

    Article  ADS  Google Scholar 

  12. J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Chiolero, and D. Loss, Phys. Rev. B: Condens. Matter 60 (5), 3453 (1999).

    Article  ADS  Google Scholar 

  13. C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, J. Magn. Magn. Mater. 241, 430 (2002).

    Article  ADS  Google Scholar 

  14. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B: Condens. Matter 71 (18), 184408 (2005).

    Article  ADS  Google Scholar 

  15. N. J. O. Silva, A. Millán, F. Palacio, E. Kampert, U. Zeitler, H. Rakoto, and V. S. Amaral, Phys. Rev. B: Condens. Matter 79 (10), 104405 (2009).

    Article  ADS  Google Scholar 

  16. R. P. Guertin, N. Harrison, Z. X. Zhou, S. McCall, and F. Drymiotis. J. Magn. Magn. Mater. 308, 97 (2007).

  17. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. V. Semenov, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and P. H. Yaroslavtsev, Phys. Solid State 58 (2), 287 (2016).

    Article  ADS  Google Scholar 

  18. D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and E. D. Khilazheva, JETP Lett. 98 (3), 139 (2013).

  19. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, S. V. Semenov, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and L. A. Ishchenko, J. Exp. Theor. Phys. 119 (3), 479 (2014).

  20. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and P. H. Yaroslavtsev, Tech Phys. Lett. 41 (7), 705 (2015).

    Article  ADS  Google Scholar 

  21. S. V. Stolyar, O. A. Bayukov, Yu. L. Gurevich, V. P. Ladygina, R. S. Iskhakov, and P. P. Pustoshilov, Inorg. Mater. 43 (6), 638 (2007).

    Article  Google Scholar 

  22. S. V. Stolyar, O. A. Bayukov, Yu. L. Gurevich, E. A.Denisova, R. S. Iskhakov, V. P. Ladygina, A. P. Puzyr’, P. P. Pustoshilov, and M. A. Bikhetina, Inorg. Mater. 42 (7), 763 (2006).

    Article  Google Scholar 

  23. Yu. L. Raikher, V. I. Stepanov, S. V. Stolyar, V. P. Ladygina, D. A. Balaev, L. A. Ishchenko, and M. Balasoiu, Phys. Solid State 52 (2), 298 (2010).

    Article  ADS  Google Scholar 

  24. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

    Google Scholar 

  25. M. Balasoiu, S. V. Stolyar, R. S. Iskhakov, L. A. Ischenko, Y. L. Raikher, A. I. Kuklin, O. L. Orelovich, Yu. S. Kovalev, and T. S. Kurkin, Rom. J. Phys. 55 (7–8), 782 (2010).

    Google Scholar 

  26. S. V. Stolyar, O. A. Bayukov, V. P. Ladygina, R. S. Iskhakov, L. A. Ishchenko, V. Yu. Yakovchuk, K. G. Dobretsov, A. I. Pozdnyakov, and O. E. Piksina, Phys. Solid State 53 (1), 100 (2011).

    Article  ADS  Google Scholar 

  27. D. Tobia, E. Winkler, R. D. Zysler, M. Granada, H. E. Troiani, and D. Fiorani, J. Appl. Phys. 106, 103920 (2009).

  28. J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Phys. Rev. B: Condens. Matter 65 (6), 064422 (2002).

    Article  ADS  Google Scholar 

  29. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).

    Article  ADS  Google Scholar 

  30. S. V. Komogortsev, R. S. Iskhakov, A. D. Balaev, A. V.Okotrub, A. G. Kudashov, N. A. Momot, and S. I. Smirnov, Phys. Solid State 51 (11), 2286 (2009).

    Article  ADS  Google Scholar 

  31. L. Néel, C. R. Hebd. Seances Acad. Sci. 252, 4075 (1961).

  32. J. T. Richardson, D. I. Yiagas, B. Turk, K. Forster, and M. V. Twigg, J. Appl. Phys. 70, 6977 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, A.A. Krasikov, S.V. Stolyar, R.S. Iskhakov, V.P. Ladygina, R.N. Yaroslavtsev, O.A. Bayukov, A.M. Vorotynov, M.N. Volochaev, A.A. Dubrovskiy, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1724–1732.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Krasikov, A.A., Stolyar, S.V. et al. Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing. Phys. Solid State 58, 1782–1791 (2016). https://doi.org/10.1134/S1063783416090092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090092

Navigation