Skip to main content
Log in

Electronic properties of ultrathin films based on pyrrolofullerene molecules on the surface of oxidized silicon

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

An Erratum to this article was published on 06 November 2014

Abstract

Results of the investigation into the interface formation during the deposition of the films based on aziridinylphenylpyrrolofullerene (APP-C60) up to 8 nm thick on the surface of the oxidized silicon substrate are presented. The procedure of detecting reflection of testing low-energy electron beam from the surface implemented in the total current spectroscopy mode with a change in the incident electron energy from 0 to 25 eV is used. The structure of maxima in the total current spectra induced by the APP-C60 deposited film is established, and the character of interrelation of these maxima with π* and σ* energy bands in the studied materials is determined. It is revealed due to analyzing the variation in intensities of the total current spectra of the deposited APP-C60 film and the (SiO2)n-Si substrate that the APP-C60 film is formed at the early deposition stage with the coating thickness thinner than one monolayer without the formation of the intermediate modified organic layer. As the APP-C60/(SiO2)n-Si interface is formed, the work function of the surface increases by 0.7 eV, which corresponds to the transfer of the electron density from substrate (SiO2)n-Si toward the film APP-C60. The optical absorption spectra of the APP-C60 films are measured and compared with the spectra of films of unsubstituted C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jo, J.-R. Pouliot, D. Wynands, S. D. Collins, J. Y. Kim, T. L. Nguyen, H. Y. Woo, Y. Sun, M. Leclerc, and A. J. Heeger, Adv. Mater. (Weinheim) 25(34), 4783 (2013).

    Article  Google Scholar 

  2. A. N. Aleshin, Phys.-Usp. 56(6), 627 (2013).

    Article  ADS  Google Scholar 

  3. I. E. Gracheva, V. A. Moshnikov, E. V. Maraeva, S. S. Karpova, O. A. Alexsandrova, N. I. Alekseyev, V. V. Kuznetsov, G. Olchowik, K. N. Semenov, A. V. Startseva, A. V. Sitnikov, and J. M. Olchowik, J. Non-Cryst. Solids 358(2), 433 (2012).

    Article  ADS  Google Scholar 

  4. S. A. Pshenichnyuk, N. L. Asfandiarov, and A. V. Kukhta, Phys. Rev. A: At., Mol., Opt. Phys. 86, 052710 (2012).

    Article  ADS  Google Scholar 

  5. S. S. Karpova, V. A. Moshnikov, A. I. Maksimov, S. V. Mjakin, and N. E. Kazantseva, Semiconductors 47(8), 1026 (2013).

    Article  ADS  Google Scholar 

  6. O. V. Gutsul, M. V. Shaplavskiy, and V. Z. Slobodyan, J. Nano-Electron. Phys. 4(3), 03008 (2012).

    Google Scholar 

  7. M. Marks, S. Sachs, C. H. Schwalb, A. Scholl, and U. Hofer, J. Chem. Phys. 139(12), 124701 (2013).

    Article  ADS  Google Scholar 

  8. J. L. Bredas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  9. S. Godlewski and M. Szymonski, Int. J. Mol. Sci. 14(2), 2946 (2013).

    Article  Google Scholar 

  10. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, and J. Szuber, Org. Electron. 13(10), 1873 (2012).

    Article  Google Scholar 

  11. A. S. Komolov, P. J. Møller, and E. F. Lazneva, J. Electron Spectrosc. Relat. Phenom. 131-132, 67 (2003).

    Article  Google Scholar 

  12. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117(24), 12633 (2013).

    Article  Google Scholar 

  13. A. Danilov, S. Kubatkin, S. Kafanov, P. Hedegard, N. Stuhr-Hansen, K. Moth-Poulsen, and T. Bjornholm, Nano Lett. 8, 1 (2008).

    Article  ADS  Google Scholar 

  14. J.K. Sørensen, J. Fock, A.H. Pedersen, A.B. Petersen, K. Jennum, K. Bechgaard, K. Kilså, V. Geshkin, J. Cornil, T. Bjørnholm, and M. B. Nielsen, J. Org. Chem. 76(1), 245 (2011).

    Article  Google Scholar 

  15. D. Friedrich, K. Henkel, M. Richter, and D. Schmeisser, BioNanoScience 1(4), 218 (2011).

    Article  Google Scholar 

  16. A. S. Konev, A. F. Khlebnikov, and H. Frauendorf, J. Org. Chem. 76(15), 6218 (2011).

    Article  Google Scholar 

  17. A. S. Komolov, S. N. Akhremtchik, and E. F. Lazneva, Spectrochim. Acta, Part A 798, 708 (2011).

    Article  ADS  Google Scholar 

  18. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996), Chap. 13, p. 464.

    Book  Google Scholar 

  19. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  20. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56(6), 754 (2011).

    Article  Google Scholar 

  21. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116(1), 761 (2012).

    Article  Google Scholar 

  22. A. Modelli and S. A. Pshenichnyuk, Phys. Chem. Chem. Phys. 15(5), 1588 (2013).

    Article  Google Scholar 

  23. A. S. Komolov and P. J. Møller, Synth. Met. 128, 205 (2002).

    Article  Google Scholar 

  24. J. G. Chen, Surf. Sci. Rep. 30(1–3), 1 (1997).

    Article  ADS  Google Scholar 

  25. J. Stöhr, NEXAFS Spectroscopy (Springer-Verlag, Berlin, 2003).

    Google Scholar 

  26. S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Tech. Phys. Lett. 29(12), 974 (2003).

    Article  ADS  Google Scholar 

  27. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  28. V. Papaefthimiou, A. Siokou, and S. Kennou, Surf. Sci. 569, 207 (2004).

    Article  ADS  Google Scholar 

  29. A. P. Hitchcock, P. Fischer, A. Gedanken, and M. B. Robin, J. Phys. Chem. 91, 531 (1987).

    Article  Google Scholar 

  30. L. Yan and Y. Gao, Thin Solid Films 417, 101 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, A.A. Gavrikov, A.E. Khlopov, S.N. Akhremchik, M.V. Zimina, Yu.A. Panina, A.V. Povolotskii, A.S. Konev, A.F. Khlebnikov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1608–1612.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Electronic properties of ultrathin films based on pyrrolofullerene molecules on the surface of oxidized silicon. Phys. Solid State 56, 1659–1663 (2014). https://doi.org/10.1134/S1063783414080125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080125

Keywords

Navigation