Skip to main content
Log in

On the vineyard formula for the pre-exponential factor in the Arrhenius law

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

By using the example of several typical thermally activated processes in atomic clusters, organic molecules, and nanostructures, it has been shown that calculations of the corresponding pre-exponential factors in the Arrhenius law according to the Vineyard formula are in good agreement with the molecular dynamics simulation data for temperature dependences of characteristic times of these processes. This “static” approach (together with the determination of the activation energy through the examination of the potential energy hypersurface) provides information on kinetic characteristics of the system without resorting to numerical simulation of the time evolution, which requires large computer resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).

    Article  ADS  Google Scholar 

  2. M. M. Maslov, Russ. J. Phys. Chem. B 4(1), 170 (2010).

    Article  Google Scholar 

  3. F. Montalenti and A. F. Voter, Phys. Status Solidi B 226, 21 (2001).

    Article  ADS  Google Scholar 

  4. A. I. Podlivaev and L. A. Openov, Phys. Solid State 54(7), 1507 (2012).

    Article  ADS  Google Scholar 

  5. L. A. Openov and A. I. Podlivaev, JETP Lett. 84(2), 68 (2006).

    Article  ADS  Google Scholar 

  6. M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51(3), 645 (2009).

    Article  ADS  Google Scholar 

  7. A. I. Podlivaev and K. P. Katin, JETP Lett. 92(1), 52 (2010).

    Article  ADS  Google Scholar 

  8. A. I. Podlivaev and L. A. Openov, Semiconductors 45(7), 958 (2011).

    Article  ADS  Google Scholar 

  9. L. A. Openov, A. I. Podlivaev, and M. M. Maslov, Phys. Lett. A 376, 3146 (2012).

    Article  ADS  Google Scholar 

  10. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  11. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).

    ADS  Google Scholar 

  12. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  ADS  Google Scholar 

  13. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  14. A. I. Podlivaev and L. A. Openov, Phys. Solid State 55(12), 2592 (2013).

    Article  ADS  Google Scholar 

  15. A. Santana, A. M. Popov, and E. Bichoutskaia, Chem. Phys. Lett. 557, 80 (2013).

    Article  ADS  Google Scholar 

  16. C. Lifshitz, Int. J. Mass Spectrom. 198, 1 (2000).

    Article  ADS  Google Scholar 

  17. S. Tomita, J. U. Andersen, K. Hansen, and P. Hvelplund, Chem. Phys. Lett. 382, 120 (2003).

    Article  ADS  Google Scholar 

  18. K. Hansen, E. E. B. Campbell, and O. Echt, Int. J. Mass Spectrom. 252, 79 (2006).

    Article  ADS  Google Scholar 

  19. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53(12), 2532 (2011).

    Article  ADS  Google Scholar 

  20. P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).

    Article  Google Scholar 

  21. M. A. White, R. E. Wasylishen, P. E. Eaton, Y. Xiong, K. Pramod, and N. Nodari, J. Phys. Chem. 96, 421 (1992).

    Article  Google Scholar 

  22. J. An, L.-H. Gan, X. Fan, and F. Pan, Chem. Phys. Lett. 511, 351 (2011).

    Article  ADS  Google Scholar 

  23. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  24. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  25. A. I. Podlivaev and L. A. Openov, JETP Lett. 81(10), 533 (2005).

    Article  ADS  Google Scholar 

  26. J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    Article  Google Scholar 

  27. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  28. I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 47(4), 778 (2005).

    Article  ADS  Google Scholar 

  29. L. A. Openov, D. A. Lobanov, and A. I. Podlivaev, Phys. Solid State 52(1), 201 (2010).

    Article  ADS  Google Scholar 

  30. M. M. Maslov, Russ. J. Phys. Chem. B 3(2), 211 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Maslov.

Additional information

Original Russian Text © M.M. Maslov, L.A. Openov, A.I. Podlivaev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 6, pp. 1191–1196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, M.M., Openov, L.A. & Podlivaev, A.I. On the vineyard formula for the pre-exponential factor in the Arrhenius law. Phys. Solid State 56, 1239–1244 (2014). https://doi.org/10.1134/S1063783414060250

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414060250

Keywords

Navigation